3.5 Connectivity in Directed Graphs
Directed Graphs

Directed graph. $G = (V, E)$

Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another. Directedness of graph is crucial. Modern web search engines exploit hyperlink structure to rank web pages by importance.
Food web graph.

Node = species.
Edge = from prey to predator.

(Directed) Graph Search

Problems in directed graphs...

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

(Directed) Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Strong Connectivity

Def. Node u and v are **mutually reachable** if there is a path from u to v and also a path from v to u.

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Q. Which graph is strongly connected?

![Graph G1](image1)

![Graph G2](image2)
Q. Is this graph strongly connected?

Ex. Web of trust (e.g., PGP-key ring):
I trust some friends by signing their keys.
If web of trust is strongly connected → I can trust everyone and everyone trusts me!
Q. How to determine if G is strongly connected, in $O(m + n)$ time? (1 min)
Strong Connectivity

Q. How to determine if G is strongly connected, in $O(m + n)$ time?

Lemma. Let s be any node.

G is strongly connected \iff every node is reachable from s, and s is reachable from every node.
Q. How to determine if G is strongly connected, in $O(m + n)$ time?

Lemma. Let s be any node.
G is strongly connected \iff every node is reachable from s, and s is reachable from every node.

Pf.
Strong Connectivity

Q. How to determine if G is strongly connected, in O(m + n) time?

Lemma. Let s be any node.
G is strongly connected ⇔ every node is reachable from s, and s is reachable from every node.

Pf. ⇒
Pf. ⇐
Strong Connectivity

Q. How to determine if G is strongly connected, in $O(m + n)$ time?

Lemma. Let s be any node.

G is strongly connected \iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow: Suppose strongly connected.

To prove: every node reachable from s, and s reachable from every node.

Q. Why does this hold?
Q. How to determine if G is strongly connected, in O(m + n) time?

Lemma. Let s be any node.
G is strongly connected ⇔ every node is reachable from s, and s is reachable from every node.

Pf. ⇒: Suppose strongly connected.
To prove: every node reachable from s, and s reachable from every node.
Q. Why does this hold?
A. Follows from definition of strongly connected graph (every pair of nodes is mutually reachable).
Q. How to determine if G is strongly connected, in $O(m + n)$ time?

Lemma. Let s be any node.
G is strongly connected \iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition (every pair of nodes is mutually reachable).
Pf. \Leftarrow Suppose every node reachable from s, s reachable from every node.
To prove: G is strongly connected.
To prove: Every two nodes are mutually reachable.
Let two nodes u and v be given.
Q. Why is u reachable from v? And v reachable from u?
Q. How to determine if G is strongly connected, in $O(m + n)$ time?

Lemma. Let s be any node.

G is strongly connected \iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition (every pair of nodes is mutually reachable).

Pf. \Leftarrow Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path. □

ok if paths overlap
Strong Connectivity

Lemma. Let s be any node.

G is strongly connected \iff every node is reachable from s, and s is reachable from every node.

Q. How to determine if G is strongly connected, in $O(m + n)$ time?
Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.
Pick any node s.
Run BFS from s in G.
Run BFS from s in G^{rev}.
Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from lemma. □