AE4509 Advanced design and optimization of composites Assignments

Delft University of Technology

Challenge the future

Advanced Design and Optimization of Composite Structures – Part 1

Problem Set 3

1. A J-stiffener has the geometry and layups shown below. It is under a load of 17792N. Determine the minimum value of R_i so that there is no failure. (Assume thin-walled structure).

Material properties:

	UD tape		PW Fabric
Ex	1.23E+11	Ра	55.152E9 Pa
Ey	8.48E+09	Ра	55.152E9 Pa
nuxy	0.29		0.05
Gxy	5.24E+09	Ра	4.826E9 Pa
tply	0.13970	mm	0.4191 mm
Xt	1693855800	Ра	534.3 MPa
Xc	1276079400	Ра	577.7 MPa
Yt	25507800	Ра	534.3 MPa
Yc	115819200	Ра	577.7 MPa
S	100652400	Ра	70.3 MPa

2. Given the value of R_i obtained in the previous problem, calculate a new flange length (up to the tangency point) and obtain the maximum flange load that can be applied without inter-rivet buckling load. The countersunk fasteners are at 25 mm spacing. What is the margin of safety for these two flanges at the bottom?

3. For a stiffened panel with stiffeners in the 1 direction, it was stated in lecture that the equivalent A_{22} for the entire panel is given by:

 $A_{22} \approx \left(A_{22}\right)_{skin}$

Consider a portion of the stiffened panel as shown below. It is made symmetric for simplicity.

Let E_s , A_s the stiffness and area of the stiffener **in the 2 direction**. Let E_{sk} and A_{sk} the corresponding values for the skin. Determine an expression for the A_{22} of the skinstiffener combination as a function of any pertinent quantities. Factor out $E_{sk}A_{sk}$ and keep the rest in terms of ℓ_1/ℓ_2 and $E_sA_s/E_{sk}A_{sk}$. Create a plot of A_{22} as a function of ℓ_1/ℓ_2 as ℓ_1/ℓ_2 ranges from 0 to 1 for $E_sA_s/E_{sk}A_{sk}=0.1$ and $E_sA_s/E_{sk}A_{sk}=0.5$. On the basis of this plot, provide recommendations when you think the above approximation is valid. (If you need the dimension of the skin/stiffener combination perpendicular to the page, assume it is equal to 1 unit of length).