
Skin-stiffener separation
5.4.3

• once the skin buckles, there is a tendency for the 

stiffener to pull-off from the skin



Skin-Stiffener separation

• arrows point to areas where skin deflects away from 

the stiffener flange and thus has a tendency to peel off

Photo at 

400 lb/in

FE 

prediction

shear loading



Skin-stiffener separation

• of particular importance under shear loading is the so-

called “pinching” of the skin that can lead to skin-stiffener 

separation at the corners of the skin bays (between 

stiffeners)

tension along these diagonals

compression along these diagonals

ellipses show typical buckling 

pattern; blue arrows show 

local loading of the skin



Skin pinching under shear

• typically, the pinched corner (under compression) fails first; 

this is more pronounced when the skin locally has buckled 

away from the viewer tending to separate from the stiffener 

angle>90 degrees; skin in tension

angle<90 degrees; 

skin in compression 

(pinches)

depending on local eccentricities and coupling 

effects some half-waves come towards the 

viewer and some away from the viewer; 

typically, they alternate; thus there will be 

corners where the skin tends to move away (separate) from 

the flanges



Skin-stiffener separation at bay 

corners

• since the critical regions (due to pinching and skin-stiffener 

separation tendency) are at corners of bays, one way to 

delay at least the separation is to add fasteners at the ends 

of the stiffeners only to save cost and weight; thus one does 

not rely on the resin only which is the weakest link between 

stiffener and skin

“anti-peel” 

fasteners

there may or may not be fasteners on 

the other side of the web



Skin-stiffener separation

• but even before buckling the tendency for skin-stiffener 

separation is still there

stiffened panel under 

compression before any 

component buckles

edge of flange: 

stress-free

top of flange: 

stress-free

bottom of skin: stress free

• interlaminar stresses must develop at the flange/skin interface 

(and other ply interfaces) to balance the far-field loads



Skin-stiffener separation

free-body diagram of the flange

Classical Laminated-

Plate Theory solution 

rising from compressive 

load along the axis of the 

stiffeners

z

y

interlaminar normal stress σz

to balance moments about the 

x axis; from ΣFz=0, it must be 

self-equilibrating

interlaminar shear stress τxz

required to balance forces in 

the x direction and moments 

about the y and z axis

interlaminar shear stress τyz

required to balance forces in 

the y direction and moments 

about the x axis

• the interlaminar stresses may combine to cause 

delamination and thus lead to skin/stiffener separation



Calculation of skin-stiffener 

separation load(s)

• there are several ways to calculate when the flange may 

separate from the skin:

– determine the full 3-D state of stress at the 

skin/stiffener interface and apply some stress-based 

delamination criterion

– assume a pre-existing delamination, calculate the 

energy release rate and determine when it equals the 

critical energy release rate for delamination 

propagation

second part of the course when 

we talk about delamination

coming up



Calculation of interlaminar stresses 

in skin/stiffener configurations

• to do this we need an additional tool: the Euler-

Lagrange equation obtained using calculus of variations



Euler-Lagrange equation: Introduction 

to calculus of variations(1)

(1) See for example, Hildebrandt, F.B. Advanced Calculus for Applications, Prentice Hall, Englewood Cliffs, 

NJ, 1976, section 7.8

• let I be defined as

• and attempt to find what condition f(y) must fulfill for 

I to be stationary

• Motivation for doing this: set up the energy in the 

structure in a form similar to I and minimize it
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with f(a) and f(b) prescribed



Euler-Lagrange equation: Calculus of 

variations

• assume that up to second order derivatives of H with 

respect to f, df/dy, and y exist and are continuous in the 

range (a,b)

• the problem becomes: of all admissible functions 

which are the functions that have continuous second 

order derivatives with the prescribed end values, find 

the one that makes I stationary

• assume the sought-for function is f(y) and define a 

family of admissible functions

• where ε is a parameter that is constant for each 

choice of v(y) but may vary for different v(y) functions
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Euler-Lagrange equation

• and v(y) is a function that is zero at the end-points a 

and b and possesses up to at least second order 

continuous derivatives in the range (a,b)

• thus, f(y)+εv(y) is still an admissible function

• εv(y) is called a variation of f(y) 

• replace now f in (5.4.3.1) by f+εv and obtain:

• since f is the function that makes I stationary, it 

can be seen that I(ε) is stationary when ε=0
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Euler-Lagrange equation

• at the same time, for I to be stationary, must have,
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Euler-Lagrange equation

• use integration by parts to evaluate the second term 

of the integrand:
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=0 because v(a)=v(b)=0

• therefore, the condition for I to be stationary when 

ε=0 is,
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• since this eqn must be true for any acceptable v(y),

twice differentiable 

and zero at a and 

b
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Euler-Lagrange equation (alternate 

approach)

• assume that I is allowed to vary and take any of the 

possible forms in the vicinity of the values of f(y) that 

make it stationary; this variation is expressed as 

• under suitable continuity conditions on f and df/dy, 

the variation can be carried under the integral,
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Euler – Lagrange equation (alternate 

approach)

• we know that if a function H is a function of two 

variables, u and v, its total differential is given by
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• in a completely analogous way, the variation of H when 

H depends on two functions u and v is given by
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Euler-Lagrange equation (alternate 

approach)

• placing (5.4.3.4) into (5.4.3.1)

• now the derivative of the variation equals the variation 

of the derivative: 
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• and substituting in (5.4.3.5):

(5.4.3.6)
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Euler-Lagrange equation (alternate 

approach)

• integrate the second term of the integrand in eq. 

(5.4.3.6) by parts by letting:
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Euler-Lagrange equation (alternate 

approach)

• placing (5.4.3.7) into (5.4.3.6),
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• or, setting f’=df/dy and rearranging,
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• since now f(a) and f(b) are prescribed, their 

variation is zero, i.e.  0)()(  bfaf 

and the first term of the RHS of (5.4.3.8) is zero



Euler-Lagrange equation (alternate 

approach)

• to minimize (or maximize) I, the variation of I must be 

zero; this is equivalent to saying that of all possible 

functions f(y) with specified values at y=a and y=b the 

one that makes I stationary is the one that makes its 

variation equal to zero; therefore, I is minimized when 

δI=0 or, from (5.4.3.8),
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• (5.4.3.9) must be true independent of the value of δf. So:
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Euler – Lagrange equation

• if instead of one function, f(y), the integral I is in terms 

of two functions f(y) and g(y),
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• an analogous procedure leads to the following two 

Euler-Lagrange equations
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(5.4.3.12)(eqns are usually 

coupled)



Euler-Lagrange equation

• finally, for higher order derivatives present in the 

integrand

• the Euler-Lagrange equation takes the form
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compare to (5.4.3.10)
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Application to the skin-stiffener 

separation problem(1)

• consider the following problem

stress-free

stresses 

known on 

this surface
stresses known on this 

surface

stress-free
stress-free

z

y

(1) Kassapoglou, C., "Stress Determination at Skin-Stiffener Interfaces of Composite Stiffened 

Panels Under Generalized Loading", J. of Reinforced Plastics and Composites, vol 13, 1994, pp 

555-572.



Local stress calculation in skin-

stiffener details
• assume the structure is long in the x direction and thus,

• the stress equilibrium equations then,
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(5.4.3.14)

(5.4.3.15)

(5.4.3.16)



Local stress calculation in skin-

stiffener details
• then, eq. (5.4.3.14) uncouples from the other two

• if we somehow knew two of the stresses, one from 

the set (τxy, τxz) and one from the set  (τyz, σy, σz) we 

could, in principle, determine the remaining ones 

from the equilibrium equations

stresses known 

on this surface; 

only in-plane 

stresses are 

present

stresses known on this 

surface; only in-plane 

stresses present

stress-free
stress-free

z

y

stress-free

• assume also that far from the origin, the interlaminar 

stresses have decayed and the classical solution is 

recovered



Local stress calculation in skin-

stiffener details

• assume that σy and τxy have the form 

(5.4.3.17)

(5.4.3.18)
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Local stress calculation in skin-

stiffener details
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• f(y) and g(y) are unknown functions

• F(z) and G(z) can be terms in a Fourier series with 

unknown coefficients.  Truncating these series after the 

first term yields, for the flange (region 1)
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(5.4.3.20)

A1,B1,C1,C2 are unknown constants



Local stress calculation in skin-

stiffener details

• use (5.4.3.19) to substitute in (5.4.3.15); then
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• and integrating with respect to z,

(P1(y) is an unknown function)

• the top of the flange (z=t1) is stress-free so τyz(z=t1)=0:
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Local stress calculation in skin-

stiffener details

• substituting in the expression for τyz,

(5.4.3.21)

• use (5.4.3.21) to substitute in (5.4.3.16); then 

(f’’=d2f/dy2)

• and integrating with respect to z,

(P2(y) is an unknown function)

• the top of the flange (z=t1) is stress-free so σz(z=t1)=0:
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Local stress calculation in skin-

stiffener details

• substituting in the expression for σz,

(5.4.3.22)

• in a completely analogous fashion, placing (5.4.3.20) 

into (5.4.3.14), solving for τxz and applying the boundary 

condition τxz(z=t1)=0 (top of flange is stress-free) we get: 
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Local stress calculation in skin-

stiffener details

• determination of σx

• so far σx was completely missing from the equations

• use the inverted stress-strain equations:

(5.4.3.24)
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Local stress calculation in skin-

stiffener details

• and the strain compatibility relations:

(5.4.3.25)

(5.4.3.26)
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• but from our previous assumption of long flange in x dir,

• and (5.4.3.25) and (5.4.3.26) become:

(5.4.3.25a)

(5.4.3.26a)
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Local stress calculation in skin-

stiffener details

• use the first of eqs (5.4.3.24) to sub in (5.4.3.25a) and 

(5.4.3.26a):

(5.4.3.25b)

(5.4.3.26b)

• integrating the first twice w.r.t. y gives:

(recall stresses 

do not depend 

on x)
• substituting in the second,
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Local stress calculation in skin-

stiffener details

• from which,
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• we can now substitute in (5.4.3.27) and solve for σx

(5.4.3.28)

• at this point, the six stresses in the flange are 

determined to within two unknown functions, f(y) and 

g(y) and a bunch on unknown coefficients
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Local stress calculation in skin-

stiffener details

• stress expressions in the flange:
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Local stress calculation in skin-

stiffener details
• the solution for the skin is very similar

z (for flange)

y

(τxy(z))ff

(σy(z))ff

t1

z (for skin) t2

• require that the stresses are continuous at the flange/ 

skin interface (overbar denotes skin)
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 these require that f(y) and g(y) 

are the same for skin and 

flange, plus eliminate some of 

the unknown coefficients



Energy minimization for stress 

calculation
• the functions f(y) and g(y) are determined by minimizing the 

energy

• use the complementary energy (stress-based) expression:
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• where

 overbar denotes skin quantities




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Energy minimization for stress 

calculation

• the x and z integrations can be carried out explicitly 

since there is no dependence on x and the z dependence 

is known (to within a couple of unknown coefficients)

• carrying out the x and z integrations transforms the 

problem to the minimization of
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which is exactly the type of integral we examined when we talked about 

calculus of variations



Energy minimization for stress 

calculation
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• A few comments:

1. Limits of integration are 0 to ∞.  In reality, the upper 

limit can have any value as long as it is sufficiently 

large for the interlaminar stresses to die out (what 

happens for very narrow flanges?)

2. The integral has up to the second order derivative 

for f(y) but only up to first order derivative for g(y)

z (for flange)

z (for skin)

y

must be sufficiently 

long



Energy minimization for stress 

calculation

• substituting in the expression for ΠC and using eqs. 

(5.4.3.12) and (5.4.3.13) leads to the following system 

of ODEs:

(5.4.3.31)

where R1-R7 are constants coming from the z integration and 

containing the compliances Sij and the coefficients in the stress 

expressions
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Energy minimization for stress 

calculation

• the solution to the ODEs is:
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• with φ the solution to 
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• and 
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• the solutions to (5.4.3.33) can be complex; only 

solutions with positive real parts are accepted!



Skin/stiffener interface stresses – remaining 

BC’s

• at this point, the remaining boundary conditions are 

imposed, namely the edge of the flange is stress free:
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: unknown

A1=C1=1



Skin/stiffener interface stresses – remaining 

BC’s
• the far-field (CLPT) stresses are, usually, piecewise linear 

in z

• by expanding the far-field stresses in Fourier series and 

taking the first terms, a system of 5 equations in the 5 

unknowns S1f, S2f, S3f, B1, C2 is obtained

• after all this, there is still, one unknown coefficient coming 

from the stress expressions in the skin; it is determined 

again by minimizing the energy

• the solution requires some iterations: a value of the 

unknown coefficient is assumed, all other unknowns are 

determined and a corrected value of the remaining 

unknown is determined; after a few iterations the process 

converges


