Out-of-plane behavior

 Based on standard plate theory, the strains are assumed to be at most linear through the thickness:

$$\varepsilon_{x} = \varepsilon_{xo} - \frac{\partial^{2} w}{\partial x^{2}} z = \varepsilon_{xo} + z\kappa_{x}$$

$$\varepsilon_{y} = \varepsilon_{yo} - \frac{\partial^{2} w}{\partial y^{2}} z = \varepsilon_{yo} + z\kappa_{y} \qquad (1.4)$$

$$\gamma_{xy} = \gamma_{xyo} - 2\frac{\partial^{2} w}{\partial x \partial y} z = \gamma_{xyo} + z\kappa_{xy}$$

 κ_x , κ_y , κ_{xy} are laminate curvatures (1/radius of curvature)

Note the coordinate system for z has its origin at the laminate midplane

• For the case of pure bending, there are no in-plane strains so $\epsilon_{xo} = \epsilon_{yo} = \gamma_{xyo} = 0$

Pure bending

• Take equations (1.1) again, multiply both sides by z and integrate through the thickness of the laminate. For example, the first equation gives:

$$\int_{-h/2}^{h/2} z \sigma_{11} dz = \int_{-h/2}^{h/2} Q_{11} z \left(-z \frac{\partial^2 w}{\partial x^2} \right) dz$$

and using the definition for M_x

$$M_{x} = -\int_{-h/2}^{h/2} Q_{11} z^{2} \frac{\partial^{2} w}{\partial x^{2}} dz - \int_{-h/2}^{h/2} Q_{12} z^{2} \frac{\partial^{2} w}{\partial y^{2}} dz - \int_{-h/2}^{h/2} 2Q_{16} z^{2} \frac{\partial^{2} w}{\partial x \partial y} dz$$

• For pure bending, the curvatures $-\partial^2 w/\partial x^2$, etc., are constant and can come out of the integral sign:

$$M_{x} = \kappa_{x} \int_{-h/2}^{h/2} Q_{11} z^{2} dz + \kappa_{y} \int_{-h/2}^{h/2} Q_{12} z^{2} dz + \kappa_{xy} \int_{-h/2}^{h/2} Q_{16} z^{2} dz$$

Pure bending

 $M_{x} = \kappa_{x} \int_{-h/2}^{h/2} Q_{11}z^{2}dz + \kappa_{y} \int_{-h/2}^{h/2} Q_{12}z^{2}dz + \kappa_{xy} \int_{-h/2}^{h/2} Q_{16}z^{2}dz$ • or, since Q_{ii} are constant for each ply:

 Repeating for the remaining two equations from (1.1) and using matrix notation:

$$\begin{cases} M_x \\ M_y \\ M_{xy} \end{cases} = \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{cases} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{cases}$$
(1.5)

Bending-Stretching coupling

- It is possible, for some laminates, to undergo bending or twisting under in-plane loads, or, undergo stretching under applied bending or torsional moments
- Returning to eq. (1.1) and using (1.4), σ_{11} is written as: $\sigma_x = Q_{11}(\varepsilon_{xo} + z\kappa_x) + Q_{12}(\varepsilon_{yo} + z\kappa_y) + Q_{16}(\gamma_{xyo} + z\kappa_{xy})$
- Integrating with respect to z and using eq. (1.2): $N_{x} = A_{11}\varepsilon_{xo} + \int_{-h/2}^{h/2} Q_{11}zdz \quad \kappa_{x} + A_{12}\varepsilon_{yo} + \int_{-h/2}^{h/2} Q_{12}zdz \quad \kappa_{y} + A_{16}\gamma_{xyo} + \int_{-h/2}^{h/2} Q_{16}zdz \quad \kappa_{xy}$
- The three integrals can be turned into summations:

$$N_{x} = A_{11}\varepsilon_{xo} + A_{12}\varepsilon_{yo} + A_{16}\gamma_{xyo} + K_{y}\sum_{k=1}^{N}Q_{11}^{(k)}\left[\frac{z_{k}^{2} - z_{k-1}^{2}}{2}\right] + \kappa_{y}\sum_{k=1}^{N}Q_{12}^{(k)}\left[\frac{z_{k}^{2} - z_{k-1}^{2}}{2}\right] + \kappa_{xy}\sum_{k=1}^{N}Q_{16}^{(k)}\left[\frac{z_{k}^{2} - z_{k-1}^{2}}{2}\right] + K_{y}\sum_{k=1}^{N}Q_{16}^{(k)}\left[\frac{z_{k}^{2} - z_{k-1}^{2}}{2}\right] + K_{y}$$

Putting it all together...

• The equivalent stress-strain relations for a laminate:

- Reminders:
 - -For symmetric laminates the B matrix is zero

–For balanced laminates (for each +0 there is a –0 somewhere) $A_{16}{=}A_{26}{=}0$

(1.6)

when is $D_{16}=D_{26}=0$??

Inverted stress-strain relations

• Usually, we do not know the strains and curvatures but the forces and moments. It is more convenient then, to use the inverted relations:

$$\begin{cases} \varepsilon_{xo} \\ \varepsilon_{yo} \\ \varepsilon_{yo} \\ \gamma_{xyo} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{cases} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{16} & \beta_{11} & \beta_{12} & \beta_{16} \\ \alpha_{12} & \alpha_{22} & \alpha_{26} & \beta_{21} & \beta_{22} & \beta_{26} \\ \alpha_{16} & \alpha_{26} & \alpha_{66} & \beta_{61} & \beta_{62} & \beta_{66} \\ \beta_{11} & \beta_{21} & \beta_{61} & \delta_{11} & \delta_{12} & \delta_{16} \\ \beta_{12} & \beta_{22} & \beta_{62} & \delta_{12} & \delta_{22} & \delta_{26} \\ \beta_{16} & \beta_{26} & \beta_{66} & \delta_{16} & \delta_{26} & \delta_{66} \end{bmatrix} \begin{bmatrix} N_{x} \\ N_{y} \\ N_{y} \\ M_{xy} \\ M_{y} \\ M_{xy} \end{bmatrix}$$
(1.7)

$$[\alpha] = [A]^{-1} + [A]^{-1} [B] [[D] - [B] [A]^{-1} [B]]^{-1} [B] [A]^{-1}$$
$$[\beta] = -[A] [B] [[D] - [B] [A]^{-1} [B]]^{-1}$$
$$[\delta] = [[D] - [B] [A]^{-1} [B]]^{-1}$$

Inverted stress-strain relations

For a symmetric laminate:

Note that, in general, the little a_{ij} and d_{ij} matrices are not the same as $\alpha_{ij} \delta_{ij}$ (they are only for symmetric laminates)

Elastic constants for a laminate

• What is the Young's modulus for a laminate?

Note: ε_{xo} is not necessarily what one would measure with a strain gage at the top of the laminate. Why?

Young's modulus for a laminate

 For a symmetric laminate under uniaxial tension: N_y=N_{xv}=0. Then from (1.6):

 $N_x = A_{11}\varepsilon_{xo} + A_{12}\varepsilon_{yo}$ $0 = A_{12}\varepsilon_{xo} + A_{22}\varepsilon_{yo}$

• Solve for ε_{vo} and substitute in the first equation to obtain:

$$N_x = \left(A_{11} - \frac{A_{12}^2}{A_{22}}\right)\varepsilon_{xo}$$

- and using the relationships between N_x and applied stress σ_{o} :

$$\sigma_{o} = \frac{F}{wh} = \frac{1}{h} \left[\frac{A_{11}A_{22} - A_{12}^{2}}{A_{22}} \right] \varepsilon_{xo}$$

Elastic constants for a laminate $\sigma_{o} = \frac{F}{wh} = \frac{1}{h} \left[\frac{A_{11}A_{22} - A_{12}^{2}}{A_{22}} \right] \varepsilon_{xo}$

• The last relation can be rewritten if one uses the fact that:

$$a_{11} = \frac{A_{22}}{A_{11}A_{22} - A_{12}^2}$$

• to obtain:

$$\sigma_{o} = \frac{1}{ha_{11}} \varepsilon_{xo}$$

from which, the membrane laminate modulus (in stretching) is:

$$E_{1m} = \frac{1}{ha_{11}}$$

Elastic constants for a laminate

• Similarly, one can show that:

 $E_{1m} = \frac{1}{ha_{11}}$ $E_{1b} = \frac{12}{h^3 d_{11}}$ $E_{2m} = \frac{1}{ha_{22}} \qquad E_{2b} = \frac{12}{h^3 d_{22}}$ $G_{12m} = \frac{1}{ha_{66}}$ $G_{12b} = \frac{12}{h^3 d_{66}}$ $v_{12m} = -\frac{a_{12}}{a_{11}}$ $v_{12b} = -\frac{d_{12}}{d_{11}}$ $v_{21m} = -\frac{a_{12}}{a_{22}}$ $v_{21b} = -\frac{d_{12}}{d_{22}}$

Failure in composites

- In a structure, failure, as a rule starts at the weakest link
- Unlike stiffness, where the overall stiffness is a weighted average of the stiffnesses of the constituents, fiber and matrix, strength is characterized by failure of the weakest link, the matrix
- Usually, matrix failure does not mean final failure. Load is transferred to fibers.
- For final failure fibers must fail

Failure modes of a ply

- A single ply can fail in (at least) 5 different ways:
 - tension along fibers (fiber pull-out and fiber failure)
 - -tension perpendicular to the fibers (matrix failure)
 - –compression along fibers (local shearing of matrix and fibers)
 –compression perpendicular to fibers (matrix shear failure)
 - -shear

Is this the right approach?

- Test for these five failure modes and, somehow, put them together in a prediction model (failure criterion)
- Alternatively, one could start at constituent level but it is hard to translate to ply level

Role of matrix

- Transfers load around cut fibers through shear
- Distance over which this transfer occurs is very small (<20 fiber diameters)

which fiber breaks first?where along its length?how is load of adjacent fibers affected?how many breaks before a fiber is ineffective?

Situation is even more complex under compression

- At the fiber/matrix level, there are multiple failure modes:
 - fiber kinking
 - fiber failure due to compression and bending (wavy fibers)
 - matrix cracking
 - failure of fiber/matrix interface

fiber kinking from W. De Backer MS thesis

wavy fibers under compression from W. De Backer MS thesis

Retreat to the ply level measured strength properties

- Combine these in a failure criterion
- There are very many failure criteria
- To paraphrase president A. Lincoln, "you can have a criterion that works for some cases all the time or for all cases some of the time but you cannot have a criterion that works for all cases all the time"

Some of the most commonly used failure criteria

<u>Maximum stress criterion</u>

 $\sigma_x < X^t \text{ or } X^c$ depending on whether σ_x is tensile or compressive $\sigma_y < Y^t \text{ or } Y^c$ depending on whether σ_y is tensile or compressive $|\tau_{xy}| < S$

- Stresses are examined separately and their interaction is not accounted for
- <u>Maximum strain criterion</u> (analogous to max stress)

 $\varepsilon_x < \varepsilon_{xu}^{t}$ or ε_{xu}^{c} depending on whether ε_x is tensile or compressive $\varepsilon_y < \varepsilon_{yu}^{t}$ or ε_{yu}^{c} depending on whether ε_y is tensile or compressive $|\gamma_{xy}| < \gamma_{xyu}$

Some of the most commonly used failure criteria

• Tsai-Hill failure criterion:

$$\frac{\sigma_x^2}{X^2} - \frac{\sigma_x \sigma_y}{X^2} + \frac{\sigma_y^2}{Y^2} + \frac{\tau_{xy}^2}{S^2} = 1$$

(X and Y are tensile or compressive stresses accordingly)

• Tsai-Wu failure criterion:

$$\frac{\sigma_x^2}{X^t X^c} + \frac{\sigma_y^2}{Y^t Y^c} - \sqrt{\frac{1}{X^t X^c}} \frac{1}{Y^t Y^c} \sigma_x \sigma_y + \left(\frac{1}{X^t} - \frac{1}{X^c}\right) \sigma_x + \left(\frac{1}{Y^t} - \frac{1}{Y^c}\right) \sigma_y + \frac{\tau_{xy}^2}{S^2} = 1$$

 Note that these two criteria recover the von-Mises yield criterion in metals if the material is isotropic; this does not mean they are any better than other failure criteria

Comparison of criteria with each other

 Under tension, most criteria tend to be reasonably close to each other

Nx (N/mm) Puck MaxStess Hoffman -1000-2000 -3000 -4000from: N. Kosmas MS thesis θ (deg)

Comparative Failure envelopes $(0_2/\theta_2/-\theta_2)_s$

Some comparisons with test results

• Under more generalized loading, there can be serious disagreement between different criteria and tests

Reminders and Discussion

- The stresses or strains in these criteria are parallel and perpendicular to the fibers in each ply
- These criteria are for "onset of failure" only (first-plyfailure)
- They cannot predict final failure; Modifications for progressive failure analysis are possible with mixed results
- These criteria do not account for out-of-plane failure (delaminations); Special criteria for out-of-plane failure have been developed (mainly stress based)
- In 1982, prof. P.A. Lagacé wrote: "There are as many failure criteria as there are researchers in the field and a consensus has yet to be reached" (Lagacé known for the Brewer-Lagacé Quadratic Delamination Criterion)

Discussion on failure criteria

- More than 30 years later, in 2014, the situation is much the same if not worse
- There have been two Worldwide Failure Exercises which concluded that no criterion is good enough
- Some interesting quotes:
- Z. Hashin (known, among other things, for the Hashin failure criterion): "My only work on this subject relates to failure criteria of uni-directional fiber composites, not to laminates...I must say to you that I personally do not know how to predict the failure of a laminate (and furthermore that I do not believe that anybody does)"

Discussion on failure criteria

- J. Hart-Smith (known, among other things, for the Hart-Smith failure criterion):
- "The **irrelevance** of most composite failure criteria to conventional fiberpolymer composites is claimed to have remained undetected..."
- Nothing in Hill's work addresses more than one mode of failure and he should therefore **be spared the ignominy** of association with the many abstract mathematical failure theories for composite materials. Yet, in the UK and Europe, **Tsai's misinterpretation of Hill's theory** of anisotropic plasticity is referred to as the 'modified Hill theory
- It should now be evident that the innumerable abstract mathematical 'failure theories' for fibrous composites... **are beyond redemption as useful structural design tools**..."
- "It is clear, then, that the unstated simplifying assumptions of traditional composite failure theories **are so contradictory to basic laws of physics that the theories should be discarded**..."

Discussion on failure criteria

- The Puck and Larc3 failure criteria seem to be the best
- It is recommended to use whichever (legitimate) criterion one wishes provided it is supported by tests
- For this course, any (legitimate) criterion can be used

Typical Scenario

• Aircraft is designed for

• flight maneuvers (take-off, climb, cruise, turn, approach, land, dive, etc.)

• taxi

crash

- static AND fatigue
- =>~2000 maneuvers

Typical Scenario (cont'd)

- At each location, there are at least 3 design concepts
 - e.g. skins: stiffened panel sandwich panel isogrid

 For each concept you may want to consider, on the average, 3 fabrication processes/material combinations

Number of trade studies

- For each location at the aircraft there are, therefore, 2000 x 3 x 3 = 18000 combinations for a single layup
- For a decent GA optimization run you need to consider at least 1000 generations with at least 15 design layups per generation or 15000 designs

Analysis requirements

- Total number of analyses to be done (e.g. FE):
 - = 18000 x 15000= 270 million analyses!!!
- and this without including convergence checks, load redistribution runs, load changes during design, etc.
- Prohibitive to do with FE; need faster, reasonably accurate analysis methods

more than 500 analyses/minute if you are working 24 hrs/day 365 days/year to finish them all in one year!

Computer simulation limitations

The A30X has undergone several rounds of lowspeed wind-tunnel tests using a subscale model. The trials have focused on airflow at landing, with speeds not exceeding Mach 0.2. Despite much work on computer-aided design, the tunnel tests are still seen as a cheaper way to gain needed airflow and loads data, the Airbus official says. Running computer models at different attitudes is costly; whereas in a wind tunnel, the model can simply be rotated and the impact measured, he adds.

R. Wall reporting in Air Transport, Feb 2009

Structural Design Process – The analyst's perspective

 Objective: Given specific requirements, "create" structure that meets requirements and at the same time has certain "desirable" attributes

Design Requirements

- Fit, form, function (fit within allowable envelope, have the appropriate matl/generic shape, perform the assigned function)
- Applied loads (static and fatigue)
- Corrosion resistance
- Natural frequency placement
- Thermal expansion coefficient
- Provide attachments for other structure (e.g. clips for electrical harnesses)
- Provide paths for other structure (e.g. ducts)
- Other

Desirable Attributes

- Minimum weight
- Minimum cost (recurring, non-recurring, assembly,...)
- Low maintenance
- Replaceability across assemblies
- Specific natural frequency placement (e.g. helicopter fuselage vs main and tail rotor harmonics)
- Zero CTE (Space applications)
- Other
- Any combination of the above

Airframe Structures

- Failure Modes:
 - Material strength
 - Notched strength
 - OHT, OHC
 - CAI, SAI, TAI
 - Buckling
 - Skin/Stringer separation
 - Delamination
 - Bearing, Bearing/Bypass

- Failure Modes:
 - Material strength (facesheet, core, adhesive)
 - Notched strength
 - OHT, OHC
 - CAI, SAI, TAI
 - Buckling
 - Wrinkling
 - Crimping
 - Intra-cell buckling
 - Delamination/Disbond
 - Rampdown

Skins – Design/Manuf. Issues

- Stringer attachment to skin
 - Co-cured
 - Bolted
 - Secondarily bonded
- Frame attachment to skin and stringers
 - Co-cured
 - Bolted
 - Secondarily bonded
- Use of shear ties between frames/stringers/skins
- Cut-outs
 - cut after curing or molded in?
 - doubler or flange design (co-cured, bolted, bonded?)

Stringers, Stiffeners, Panel Breakers

- carry longitudinal loads
- break-up skin in smaller panels to increase buckling load
- various cross-sections

panel breakers change buckling pattern and load

Frames, Bulkheads

- maintain fuselage shape
- carry concentrated loads (e.g. landing gear)
- provide back-up support for other structure or equipment attachments
 - Failure modes:
 - Material strength
 - Buckling of individual webs
 - Crippling of stiffeners or doublers
 - Crippling of caps

 bending and out-of-plane shear loads

best option

- seat loads

impact loads (dropped tools during maintenance etc.)

- Load transfer in all three directions
 through-the-thickness reinforcement
- Lug failure modes
 - Net tension
 - Shear-out
 - Bearing

Doors, Covers

- Aerodynamic pressure loads
- Skin shear loads
- Geometry complexity (compound curvature)
- Presence of cut-outs

cross-section

lightly loaded doors=> min gage!