
Design Process

• Obtain applied loads

• Obtain material properties

• Come up with a structural configuration

• Analyze structural configuration to

– meet loads without failure (static and fatigue)

– minimize weight

– minimize cost 

– optimize other quantities (frequency, radar signature, 

etc.)

• Iterate

check if

concept is

manufacturable

verify analysis 

by tests



Design Process

Applied 

loads

Material 

properties

Design 

Req’ts

Structural 

configuration 

Analysis of 

Structural 

configuration 

Meet loads 

and design 

req’ts?

Design has 

desirable 

attributes?

N

Y

N

Y Done

Taxi, take-off, 

flight, land, 

crash…

Fit, form, function; 

No failure under 

load;…

Strength, 

Stiffness, 

Density…

Preliminary 

design

Producibility 

trials
Test

More than 50% and, sometimes, as much as 

70% of the cost is “locked in” during preliminary 

design!!



Applied Loads and Usage

• Different users perform the same maneuver differently 
resulting in different loads

• 95th percentile (or some other high percentile) of max 
load occurring in maneuver simulation) to cover most 
cases

Load

TimeEntry Exit

max load during one simulation

nominally same maneuver 

simulated many times

Peak 

loads

95th

percentile

Load



Material

• Variability (scatter) 

– raw material

– manufacturing

– etc.

• Environmental effects

• Effect of damage

A,B-Basis 

values

mean



Material scatter
Typical Uni-directional Gr/E (0 deg)

TensionCompression

B-Basis

A-Basis



Material scatter

• B-Basis (10th percentile): 90% of the 

strength tests will have higher failure load

• A-Basis (1 percentile): 99% of the strength 

tests will have higher failure load

• typically, A-Basis is used for single-load path primary 

structure and B-Basis is used for multiple-load path primary 

or secondary structure (failure does not lead to loss of 

vehicle) 



Effect of environment

• “knockdown due to environment (=separation between 
red horizontal lines): 5-30% depending on property

Typical Uni-directional Gr/E
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Effect of damage

(1) Whitehead, R.S., “Lessons Learned for Composite Structures”, Proc First NASA Advanced 

Composites Technology Conference, Seattle WA, 1990, pp 399-415
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Effect of Damage (cont’d)

• Design structure to take ultimate load in presence 

of Threshold Of Detectability or Barely Visible 

Impact Damage

• Design structure to take limit load in presence of 

(some) Visible Damage (VD) (e.g. 6 mm dia hole)

• If TODload capability / VDload capability <1.5, TOD is 

critical; otherwise, VD is critical

TOD load

VD load

strength

damage
TOD VD



Design value

Strength

mean RTA 

undamaged

mean with worst 

environmental 

effects undamaged

mean with worst 

environmental effects 

and worst damage

B-Basis 

design value

A-Basis 

design value

5-20%

Depending on 

material and 

property

10-35% 
depending on 

material and 

property
design values



• Combine “worst” effects for material scatter, 
environment, and damage

Cutoff strains (or stresses)

Worst 

Knockdown 

source

Knockdown 

fraction

Environment 

(ETW compr or 

shear)

0.8

Damage (BVID) 0.65

Material scatter

(CV~11%)

0.8

Mean undamaged failure strain (compression) 

~ 11000 microstrain (0.011)

Cutoff strain value= 

11000 x 0.8 x 0.65 x 

0.8 =4576 microstrain 

(=0.0045 mm/mm)

Independent of loading 

case, environment, layup, 

etc.=> conservative

(CV=std. dev/mean x 100)



Weight comparison: Al versus 

composites
Aluminum (7075-

T6)

Quasi-Isotropic 

Gr/Epoxy

Gr/E layup 

used in compr*

Density (kg/m^3) 2777 1611 1611

Young’s modulus 

(GPa)

68.9 48.2 71.7

Compr. (yield) 

failure strain (μs)

5700 4576 ~4500

Compr. failure 

stress (MPa)

392.7 220.8 ~322.6

• Aluminum is, typically, stronger than Gr/E but also has 

higher density

* [45/-45/02/90]s including knockdowns for material 

scatter, environment and damage



Weight comparison: Al versus 

composites
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Some added considerations of the 

design process

Material capability 

(strength, stiffness)

Configuration 

performance (different 

failure modes)

Conservative(1)

analysis to 

determine stresses 

and strains

Failure criteria

Cutoff values

(1) Reasonably conservative, reasonably accurate and fast tends to be preferable to very accurate 

but computationally very expensive methods

eccentricity 

driven

out-of-plane 

failure

local (bay) 

buckling



Some added considerations of the 

design process

Material capability 

(strength, stiffness)

Configuration 

performance (different 

failure modes)

Conservative(1)

analysis to 

determine stresses 

and strains

Failure criteria

Cutoff values

(1) Reasonably conservative, reasonably accurate and fast tends to be preferable to very accurate 

but computationally very expensive methods

Discuss failure modes briefly and how some of 

them are difficult to pick-up in analysis

Discuss problems with failure criteria

Segway into cutoff values

eccentricity 

driven

out-of-plane 

failure

local (bay) 

buckling



Related issues/considerations

• Being able to obtain accurate stresses and/or strains is 
not enough to quantify failure correctly and thus not 
enough to generate a good design

• Need to know the failure mode in advance

• Design to specific failure mode(s) and not on the basis of 
highest stress in a model
– e.g. buckling vs crippling analysis

– Buckling of bays vs buckling of plate (isogrid)

– Interlaminar stresses require much higher mesh density in FE 
model so a model could be good from every other respect but if 
you did not know the possibility of delamination you would not 
capture the critical failure mode (e.g. skin-stiffener separation, 
stiffener termination)

• Modelling issues (e.g. fasteners, BC’s between ss and 
clamped, etc)



Multiplicity and interaction of failure 

modes (lugs)

Net section 

failure

Bearing, (hole elongates and 

material ahead of pin fails) and 

net section failure combined

Shearout, (shear failure ahead of 

pin hole along loading plane) and 

net section failure combined

Delamination

Even for a “simple” detail 

like a lug, the multiplicity 

of failure modes can 

make failure prediction 

extremely difficult.  FE 

cannot help much.



Multiplicity and interaction of failure 

modes (sandwich structure)

• Wavy shape of facesheet can lead to:

– material failure of the facesheet (bending combined with compression)-A

– material failure of the adhesive (tension, compression, shear)- A, B

– material failure of the core (tension, compression, shear)

• Stability driven/related failure of the facesheet

– facesheet buckling (plate on elastic foundation)

– wrinkling

– intra-cellular buckling

• etc.

A
B sandwich under 

compression at 

failure



Governing Equations - Linear
(Cartesian coordinates)

• Equilibrium (no body forces)

5.2.2
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Governing Equations (cont’d)
• Stress-strain equations (e.g. per ply)
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• or, in terms of force and moment resultants
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Governing Equations (cont’d)

• Strain-displacement equations
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Governing Equations (cont’d)
• eliminating strains and forces and moments (e.g. Jones section 

5.2.2):
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Governing Equations (cont’d)
• if in-plane forces Nx, Ny, Nxy ≠ 0, additional terms from ΣFz=0
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Governing Equations (cont’d)

• to see how additional terms are derived, consider Fz

force at two ends
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Example: 

• Composite plate under localized in-plane load



Motivation: Stiffener termination

Simplified 

problem to 

be solved

x

y

1

h

b

a

o

Stiffened 

panel

Transitioning 

into flat panel

F



Objectives
• determine the stresses in the plate so they can be used in 

some form of failure criterion to predict failure

• determine the length ℓ and width w of the region where 

stresses exceed significantly their far-field values (near the 

point of load application) to get an idea of the geometry of 

the region that needs reinforcement (doubler)

• design transition region for load introduction into the plate 

to be used in further analysis 

Stresses do not vary appreciably 

from far-field stresses

Stresses vary appreciably from 

far-field stresses

ℓ

w



Concentrated load acting on composite 

plate – solution(1)

• Assumptions

– Homogeneous orthotropic plate

– Layup is symmetric (B matrix=0)

– Layup is balanced (no stretching/shearing coupling=> 

A16=A26=0)

– There is no twisting/bending coupling (D16=D26=0)

– Plate is sufficiently long and wide so solution is not 

affected by boundary proximity

(1) Kassapoglou, C., and Bauer, G., “Composite Plates Under Concentrated Load on One 

Edge and Uniform Load on the Opposite Edge”, Mechanics of Advanced Materials and 

Structures, 17, 2010 pp 196-203



Derive governing PDE

• stress-strain eqns
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Governing PDE (cont’d)

• No dependence on out-of-plane 

coordinate z:

–

• out-of-plane stresses τxz= τyz= σz=0

• equilibrium eqns have the form:
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Governing PDE (cont’d)

• Solving for the strains
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displacement equations gives the strain compatibility:

• Substituting for the strains in the strain compatibility eqn:
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Governing PDE (cont’d)

• Use stress equilibrium equations and successive 

differentiations to substitute in the above equation
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Boundary Conditions
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Solution of PDE

• Assume solution of the form (fn unknown)
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• Substituting, fn is found to satisfy the eqn:
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Solution of PDE (cont’d)

• only the two φ solutions with negative real parts 
are used (decaying exponentials) provided the 
plate is “long enough”; otherwise, all four 
solutions must be used

• a constant Ko is introduced to get the most 
general form of the solution



Determination of all stresses

• using equilibrium equations and boundary 

conditions (except at x=0) the stresses are found 

to be:
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• only even terms contribute to the solution

• Ko and An are still unknown
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Boundary condition at x=0

• Ko and An are determined as Fourier cosine 
series coefficients:
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