Solution – Number of terms

(series convergence)

Solution accuracy – Comparison with Finite Elements

Solution accuracy-Comparison with Finite Elements

Normalized transverse distance y/b

Solution accuracy – Comparison with Finite Elements

Normalized transverse distance y/b

Results-Implications for the transition region

Results – Implications for the transition region

Results – Implications for transition region

Normalized transverse distance (y/b)

Conclusions based on results so far

- Axial stresses in (0/90)₄ panels decay more slowly (require longer doublers) than (±45)₄ or [(±45)/(0/90)]s panels
- On the other hand, transverse and shear stresses in (±45)₄ or [(±45)/(0/90)]s panels are more critical than in (0/90)₄ panels
- Preliminary doubler (reinforcement dimensions): l=0.5a for (0/90)₄ and 0.3a for (±45)₄ or [(±45)/(0/90)]s panels and w=0.3b for all panels

Anisotropic Plate Under Transverse Point Load

Simply-supported edges all-around

- Symmetric layup => B_{ij=0}
- D₁₆=D₂₆=0

Motivation

- Plates under point loads (e.g. step loads) are not uncommon
- More importantly, this can be a first step towards simple modeling of impact event

Plate Under Point Load – Governing PDE

common to many problems!

Solution to PDE

 Since simply supported, solution for w is in the form:

$$w = \sum \sum A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

which is a double Fourier series

 Expand right hand side in a Fourier series and determine unknown coefficients A_{mn}

$$F\delta(x-x_o)\delta(y-y_o) = \sum \sum B_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

Solution to PDE cont'd

• Substituting in governing PDE and matching terms:

$$A_{mn} = \frac{\frac{4F}{ab}\sin\frac{m\pi x_o}{a}\sin\frac{n\pi y_o}{b}}{D_{11}\left(\frac{m\pi}{a}\right)^4 + 2(D_{12} + 2D_{66})\frac{m^2n^2\pi^4}{a^2b^2} + D_{22}\left(\frac{n\pi}{b}\right)^4}$$

• Finally, plate deflections are given by

$$w = \sum \sum \frac{\frac{4F}{ab} \sin \frac{m\pi x_o}{a} \sin \frac{n\pi y_o}{b} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}}{D_{11} \left(\frac{m\pi}{a}\right)^4 + 2(D_{12} + 2D_{66}) \frac{m^2 n^2 \pi^4}{a^2 b^2} + D_{22} \left(\frac{n\pi}{b}\right)^4}$$

Special Case

 Force F acting at plate center: Max deflection δ at location where F acts is,

$$\delta = w_{\text{max}} = \sum \sum \frac{\frac{4F}{ab} \sin^2 \frac{m\pi}{2} \sin^2 \frac{n\pi}{2}}{D_{11} \left(\frac{m\pi}{a}\right)^4 + 2(D_{12} + 2D_{66}) \frac{m^2 n^2 \pi^4}{a^2 b^2} + D_{22} \left(\frac{n\pi}{b}\right)^4}$$

Then...

- Once w is determined, strains ϵ_x , ϵ_y , γ_{xy} can be obtained from strain-displacement equations
- Strains can be substituted in a failure criterion (e.g. max strain) to check for failure and modify design accordingly

Energy Methods

- Solving the governing PDE is usually very difficult. Other methods such as energy methods are used in such cases
- Min Potential Energy: "Of all geometrically compatible displacement states, those which also satisfy the force balance conditions give stationary values to the potential energy"*
- Min Complementary Energy: "Of all <u>self-balancing force states</u>, those which also satisfy the requirements of <u>geometric compatibility</u> give stationary values to <u>the complementary energy</u>"

* Crandall, S.H. Engineering Analysis, McGraw-Hill, 1956

Energy Methods (cont'd)

• In other words (methods of solution):

Equilibrium equations	Strain Compatibility condition	Force Boundary Conditions	Displa- cement Boundary Conditions	Energy	Solution is
Exactly	Exactly	Exactly	Exactly	Minimized	Exact
Approximately	Exactly	(on an average sense)	Exactly	Minimize potential (displ based)	Approximate
Exactly	Approximately	Exactly	(on an average sense)	Minimize comple- mentary	Approximate

Energy expressions for anisotropic plate

Potential energy

$$U = \frac{1}{2} \iint \left\{ A_{11} \left(\frac{\partial u}{\partial x} \right)^2 + 2A_{12} \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + A_{22} \left(\frac{\partial v}{\partial y} \right)^2 + A_{66} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + 2 \left(A_{16} \frac{\partial u}{\partial x} + A_{26} \frac{\partial v}{\partial y} \right) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right\} dxdy + \\ \iint \left\{ -B_{11} \frac{\partial u}{\partial x} \frac{\partial^2 w}{\partial x^2} - B_{12} \left(\frac{\partial v}{\partial y} \frac{\partial^2 w}{\partial x^2} + \frac{\partial u}{\partial x} \frac{\partial^2 w}{\partial y^2} \right) - B_{22} \frac{\partial v}{\partial y} \frac{\partial^2 w}{\partial y^2} - 2B_{66} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \frac{\partial^2 w}{\partial x \partial y} \right\} dxdy + \\ -B_{16} \left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \frac{\partial^2 w}{\partial x^2} + 2 \frac{\partial u}{\partial x} \frac{\partial^2 w}{\partial x \partial y} \right] - B_{26} \left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \frac{\partial^2 w}{\partial y^2} + 2 \frac{\partial v}{\partial y} \frac{\partial^2 w}{\partial x \partial y} \right] dxdy + \\ \frac{1}{2} \iint \left\{ D_{11} \left(\frac{\partial^2 w}{\partial x^2} \right)^2 + 2D_{12} \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} + D_{22} \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + 4D_{66} \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 + 4D_{16} \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial x \partial y} + 4D_{26} \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 w}{\partial x \partial y} \right\} dxdy +$$

Pure membrane Bending-stretching coupling Pure bending

Example: Rectangular composite plate with two concentric layups⁽¹⁾

- simply supported outer perimeter
- applied <u>constant force</u> N_a=F/(2b)

(1) Kassapoglou, C., "Composite Plates With two Concentric Layups Under Compression", Composites Part A: Applied Science and Manufacturing, 39, 2008, pp 104-112.

Motivation

- special cases of stiffened panels
- terminated stiffeners
- panel with rectangular cutout

Two edge stiffeners

One center stiffener or panel breaker condition

One terminated stiffener at the center

Plate with rectangular cutout

 Increased buckling load (same weight) over single layup case

Solution

- Assume inner and outer layups are symmetric
- Energy expression decouples to stretching and bending energy
- To determine in-plane forces need only the stretching part of the complementary energy:

$$U_{c} = \frac{1}{2} \iint \left[a_{11} N_{x}^{2} + a_{22} N_{y}^{2} + 2a_{12} N_{x} N_{y} + a_{66} N_{xy}^{2} \right] dxdy$$

Solution: Minimization of complementary energy

• Select force resultants that satisfy equilibrium,

$$\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} = 0$$
$$\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} = 0$$

force boundary_conditions,

$$N_{x}(x = 0) = N_{x}(x = 2a) = \frac{F_{a}}{2b}$$

$$N_{y}(y = 0) = N_{y}(y = 2b) = 0$$

$$N_{xy}(x = 0) = N_{xy}(x = 2a) = N_{xy}(y = 0) = N_{xy}(y = 2b) = 0$$

• Selected Nx, Ny, Nxy:

$$N_{x} = \frac{F_{a}}{2b} + \sum_{m=1}^{M} \sum_{n=1}^{N} H_{mn} (\cos 2m\pi\xi - 1) \cos 2n\pi\phi \qquad \xi = \frac{x}{2a}$$

$$N_{y} = \frac{b^{2}}{a^{2}} \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{m^{2}}{n^{2}} H_{mn} \cos 2m\pi\xi (\cos 2n\pi\phi - 1) \qquad \phi = \frac{y}{2b}$$

$$N_{xy} = \frac{b}{a} \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{m}{n} H_{mn} \sin 2m\pi\xi \sin 2n\pi\phi$$

Minimize Total Energy

• determine H_{mn} by setting:

$$\frac{\partial \Pi}{\partial H_{mn}} = 0$$

a_{ii}=ij entry of A⁻¹ matrix

Solution (cont'd)

- Determine u(x=2a)
 - Calculate axial strain

$$\varepsilon_{x} = \frac{N_{x}A_{22} - N_{y}A_{12}}{A_{11}A_{22} - A_{12}^{2}}$$

 Substitute for Nx, Ny and integrate w.r.t x. This gives u to within an arbitrary function of y. Apply boundary condition u(x=0)=0 to obtain:

$$u(x=2a) = u(\xi=1) = \frac{2a}{A_{11}A_{22} - A_{12}^{2}} \left(\frac{A_{22}F_{a}}{2b} - A_{22}\sum_{m}\sum_{n}H_{mn}\cos 2n\pi\phi\right)$$

Solution (cont'd)

 Substitute in the expression for the total energy and minimize with respect to H_{mn}:

 System of mxn^{*} equations by mxn unknowns solved by Gaussian elimination

* typically set m=n=30

Results – Comparison with FE

- Center layup: $(\pm 45)_5/(0/90)_2/(\pm 45)_5$
- Perimeter layup (±45)/(0/90)₂/(±45)
- Plain weave fabric
- 50.8cm x 50.8 cm plate with center layup dimensions:
 - 5.08 cm x 5.08 cm
 - 10.16 cm x 10.16 cm
 - 25.4 cm x 25.4 cm

Comparison to FE results

Buckling

Buckling under own weight

Buckling under own weight

Buckling

Simply supported composite plate under bi-axial loading*

* Whitney, J.M., *Structural Analysis of Laminated Anisotropic Plates*, Technomic Publishing, 1987, section 5.5

Buckling of Plate under Biaxial Load (cont'd)

Governing equation (from before with N_{xy}=0)

$$D_{11}\frac{\partial^4 w}{\partial x^4} + 2(D_{12} + 2D_{66})\frac{\partial^4 w}{\partial x^2 \partial y^2} + D_{22}\frac{\partial^4 w}{\partial y^4} = N_x\frac{\partial^2 w}{\partial x^2} + N_y\frac{\partial^2 w}{\partial y^2}$$

• BC's:

$$w = M_{x} = -D_{11} \frac{\partial^{2} w}{\partial x^{2}} - D_{12} \frac{\partial^{2} w}{\partial y^{2}} = 0 \qquad \text{at x=0 and x=a}$$
$$w = M_{y} = -D_{12} \frac{\partial^{2} w}{\partial x^{2}} - D_{22} \frac{\partial^{2} w}{\partial y^{2}} = 0 \qquad \text{at y=0 and y=b}$$

Buckling under Biaxial Load (cont'd)

• Solution:

$$w = \sum \sum A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

 Satisfies all BC's; Substitute in governing eqn and satisfy it term-by-term:

 $\pi^{2}A_{mn}\left[D_{11}m^{4} + 2(D_{12} + 2D_{66})m^{2}n^{2}(AR)^{2} + D_{22}n^{4}(AR)^{4}\right] = -A_{mn}a^{2}\left[N_{x}m^{2} + N_{y}n^{2}(AR)^{2}\right]$ (AR)=aspect ratio=a/b

• For $A_{mn} \neq 0$ and Nx = -No, Ny = -k No

(N_o is special value of Nx at which out-of-plane deflections of the plate are possible=> buckling load)

Buckling under Biaxial Load (cont'd)

Buckling Load

$$N_{o} = \frac{\pi^{2} \Big[D_{11} m^{4} + 2(D_{12} + 2D_{66}) m^{2} n^{2} (AR)^{2} + D_{22} n^{4} (AR)^{4} \Big]}{a^{2} (m^{2} + kn^{2} (AR)^{2})}$$

find m,n that minimize N_o

• Uniaxial compression (Ny=0=>k=0) $N_{o} = \frac{\pi^{2} \left[D_{11}m^{4} + 2(D_{12} + 2D_{66})m^{2}n^{2}(AR)^{2} + D_{22}n^{4}(AR)^{4} \right]}{a^{2}m^{2}}$

which is minimized for n=1; determine m that minimizes N_o

$$N_{o} = \frac{\pi^{2} \left[D_{11} m^{4} + 2(D_{12} + 2D_{66}) m^{2} (AR)^{2} + D_{22} (AR)^{4} \right]}{a^{2} m^{2}}$$
(5.2.3.1)

Uniaxial compression (cont'd)

• m is number of halfwaves in x direction (function of AR)

