5.2.4

Post-Buckling

Post-buckled composite stiffened panel under shear



Buckling vs Post-buckling

* in general buckling does not imply failure especially
for plates
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beam post-buckling curve is flat and failure strains are reached at low
post-buckling loads



Buckling vs Post-buckling

* post-buckled (stiffened) skins are significantly lighter
but have additional challenges:

— susceptible to skin/stiffener separation failure
where only resin holds the structure (unless
fasteners or other means are used to hold it together)

— susceptible to the creation and growth of
delamination under fatigue loading especially at high

post-buckling factors ”//77_ 7
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Buckling versus Post-Buckling

* If a composite structure is allowed to post-buckle,
the ratio of final failure load to buckling load (post
buckling ratio PB) must be chosen carefully
(especially for shear loads)

« Conservative approach (but not very efficient): Do
not allow buckling below limit load (i.e. PB=1.5)

* PB>5 great design challenge both under static and
fatigue loads



Post-buckling mode
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What buckles and when?

What BC'’s are the different components supposed to simulate?



Post-Buckling Scenarios

« Skin buckling as a whole (stiffeners only
Increase the bending stiffness of the skin)

 Stiffeners buckle as columns or locally
(crippling)




Post-buckling scenarios

 Most efficient:

— Skin between stiffeners and frames buckles
first

— Stiffeners do not buckle and do not move out

of plane (depending on cross-section they may
rotate => BC implications)

— When required PB value is reached, skin falils
In compression and/or stiffeners fail by crippling
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stiffeners impose zero deflection stiffeners impose zero deflection
and slope only



Post-Buckling Analysis

* governing equations: Large deflection von Karman
equations

« place moment equilibrium eqgn into Fz equilibrium eqn:
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* use the moment-curvature relations to substitute for
the moments
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Derivation of von Karman
equations (large deflections)

* to obtain:

15t von Karman equation: Predominantly bending



Strain Compatibility
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Derivation of von Karman
eqguations (large deflections)

* use (non-linear) strain compatibility
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* invert stress-strain egns to express strains in terms of
Ny, Ny, N,y
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Derivation of von Karman
eqguations (large deflections)

e Substitute in strain compatibility to obtain,
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* introduce Airy stress function and potential V that identically
satisfy stress equilibrium:
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Derivation of von Karman
eqguations (large deflections)

* t0 obtain
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Post-buckling of a square anisotropic plate
under compression

simply-supported with three immovable edges:
w=0 at x=y=0 and x=y=a

u=0 at x=0

v=0 at y=0 and y=a

u=-C at x=a (constant compressive displacement)



Solve the two von Karman equations
approximately

e assume
. 2a 5 a2 , , coefficients
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* substitute in the 2" von Karman equation
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Solution (cont’'d)

* P, (as a function of P,) and deflection C are determined
by integrating stress-strain egns and using average BC's
on u and v:
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Solution (cont’'d)
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Solution (cont’'d)

e substitute now in the 15t von Karman equation

o*w o*w

D, —4+2(D, +2Dg)——+D
OX

axzayz
* use the following:

o'w _ o'w
ox*  ox’oy’

2 2

Ox> a a

o'w AN
= ay4 :Wll g

2
oW _ oW :—wll(z) sin Zsin @

o*'w  0%F d*w
22 8y4 = 8y2 o2
sinﬁsinﬂ

a a

a

0°F _ Py 2z 2 AnAy, — Alz2 W112 coS 271X
Ox* a (a A, 32 a
0°F _ P . 27\’ Ay A, - A122 W112 oS 27y
oy’ a \a A, 32 a

282F o°w  0°F o°w

_|_
OXOy OXoy  Ox° oy’



Solution (cont’'d)

* to substitute, and match coefficients of
sin(trx/a)sin(try/a) to obtain the governing eq for w,,
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Solution (end)

* For out-of-plane deflections to be possible, must have

P
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» the applied load P, must exceed the plate buckling load



Results-Implications

* use as example,

(£45)/(0/90)/(x45) square plate of side 25.4 cm
Material is plain weave fabric with properties:
E,=E,=68.94 GPa

V,,~0.05

G,,=5.17 GPa

ply thickness = 0.19 mm



. oad versus center deflection
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In-plane compression load
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 the center of the plate sees very little load!




Implication

« after buckling approximate in-plane load beff
# . « @ a

 there is an effective width b at the edges of the
panel over which the load is concentrated
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peak N, value



Determination of effective width

- total applied force must equal the force created by
the load applied over the effective width:
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Solving for b

* Note that for quasi-isotropic layup,
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Effective width b
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Significance for design

* b« provides an idea of where failure is expected under
compression and where reinforcement may be needed

« For (conservative) failure predictions obtain the
maximum compressive stress

N

Cmax = — 1 (h is plate thickness)

h

« and compare to allowable ultimate compression stress

O rrox < O it for no failure

* plus one more use in crippling of stiffener flanges



How good is the analysis compared to
reality?

« For a meaningful comparison, two conditions must be
met:

— Boundary conditions in the “test case” must be the same as in
the model

— Sufficient number of terms must be included in the solution (as
opposed to only one term used here for simplicity)

« As itis hard to find test results with exactly these
boundary conditions, FE results are used to validate the
analysis

« Two different laminates: (a) 45 degree dominated
(b) Quasi-isotropic



Analysis model versus FE (45-dominated
o Jaminate).

20 .! . T ‘ e / ]
181‘ i i / 18‘ 5 ] |
i ' / : 74 ‘
7 ; ‘ // :
:" 1 14, . 3
g 512:
T 3 | end displa-
o k=) 10 [OHONONO) ]
o B o cement
- g
El-. 8- s Y % 8l-- =
/ [OHONONO]
s-i . 6 ]
4 : i r ! 4 -
l ; | — Analytical (AR=2)] | |— Analytical (AR=2)§
p ] e —— soo—-— ey Y =TV (R 2 2»,:’-' -—Analytlcal_(AR=4)L
FEM (AR=2) | :,: FEM (AR:Q)
- . FEM (AR=4) o S N SO S, e - N |
% o5 1 15 2 25 3 a5 0 02 04 06 08 1 12 14
Out-of-plane displacement [mm] End displacement [mm]

* Results from R. Kroese MS Thesis TUDelft 2013
» Excellent agreement between FE and Analysis



Analysis model versus FE (Quasi-isotropic
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Boundary conditions discussion

 If the stiffeners in a stiffened panel have very high EI and
very low GJ, and one end is attached to a frame with
also very high El and low GJ, this analytical model would

be guite accurate
 If not, the model may be conservative or unconservative

« Must also use enough terms in the series and account
for rectangular as opposed to square panels

frame

stiffener skin between
stiffeners



