
Post-Buckling
5.2.4

Post-buckled composite stiffened panel under shear



Buckling vs Post-buckling

• in general buckling does not imply failure especially 

for plates 
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Pcr
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beam post-buckling curve is flat and failure strains are reached at low 

post-buckling loads



Buckling vs Post-buckling

• post-buckled (stiffened) skins are significantly lighter 

but have additional challenges:

– susceptible to skin/stiffener separation failure 

where only resin holds the structure (unless 

fasteners or other means are used to hold it together)

– susceptible to the creation and growth of 

delamination under fatigue loading especially at high 

post-buckling factors

skin/stiffener 

separation

skin/stiffener 

separation
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separation



Buckling versus Post-Buckling

• If a composite structure is allowed to post-buckle, 

the ratio of final failure load to buckling load (post 

buckling ratio PB) must be chosen carefully 

(especially for shear loads)

• Conservative approach (but not very efficient): Do 

not allow buckling below limit load (i.e. PB=1.5) 

• PB>5 great design challenge both under static and 

fatigue loads



Post-buckling mode

frame

frame

stiffeners

skin

What buckles and when?

What BC’s are the different components supposed to simulate?



Post-Buckling Scenarios

• Skin buckling as a whole (stiffeners only 
increase the bending stiffness of the skin)

• Skin buckling between the bays (stiffeners 
act as panel breakers)

• Stiffeners buckle as columns or locally 
(crippling)

• Frames do not buckle!



Post-buckling scenarios

• Most efficient:
– Skin between stiffeners and frames buckles 

first

– Stiffeners do not buckle and do not move out 

of plane (depending on cross-section they may 

rotate => BC implications)

– When required PB value is reached, skin fails 

in compression and/or stiffeners fail by crippling

stiffeners impose zero deflection 

and slope

stiffeners impose zero deflection 

only



Post-Buckling Analysis
• governing equations: Large deflection von Karman 

equations

• place moment equilibrium eqn into Fz equilibrium eqn:
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• use the moment-curvature relations to substitute for 

the moments

D16=D26=0

Bij=0
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Derivation of von Karman 

equations (large deflections)
• to obtain: 

1st von Karman equation: Predominantly bending
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Strain Compatibility
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Derivation of von Karman 

equations (large deflections)

• use (non-linear) strain compatibility
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non-linear terms
εxo, εyo, γxyo mid-plane 

strains

• invert stress-strain eqns to express strains in terms of 

Nx, Ny, Nxy
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Derivation of von Karman 

equations (large deflections)

• substitute in strain compatibility to obtain,
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• introduce Airy stress function and potential V that identically 

satisfy stress equilibrium:
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loads (=0 in our post-

buckling problem)



Derivation of von Karman 

equations (large deflections) 

• to obtain

2nd von Karman equation: Predominantly stretching 

(and non-linear)
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Post-buckling of a square anisotropic plate 

under compression

simply-supported with three immovable edges:

w=0 at x=y=0 and x=y=a

u=0 at x=0

v=0 at y=0 and y=a

u=-C at x=a (constant compressive displacement)

a

a

Px

(applied 

force)

rigid

x

y



Solve the two von Karman equations 

approximately

• assume
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• substitute in the 2nd von Karman equation
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w11, K02, K20 unknown 

coefficients
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matching coefficients 

of cos(2πy/a) and 

cos(2πx/a)

and the 2nd von 

Karman eqn is 

identically satisfied



Solution (cont’d)

• Py (as a function of Px) and deflection C are determined 

by integrating stress-strain eqns and using average BC’s 

on u and v:
 2

2

1



















x

w

x

u
xo

 
yxxo N

AAA

A
N

AAA

A
2

122211

12

2

122211

22





also

non-linear strain-displacement eq

inverted stress-strain eq

Airy stress function F
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Solution (cont’d)

=-C =0  
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isotropic

=0 for in-plane problems
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Solution (cont’d)

• substitute now in the 1st von Karman equation
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• use the following:
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Solution (cont’d)

• to substitute, and match coefficients of 

sin(πx/a)sin(πy/a) to obtain the governing eq for w11

• which for w11≠0 leads to

=Pcr , buckling load (units of force), exact for square plate

2nd von Karman eq is satisfied 

approximately!
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Solution (end)

• For out-of-plane deflections to be possible, must have
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• the applied load Px must exceed the plate buckling load



Results-Implications

• use as example,

(±45)/(0/90)/(±45) square plate of side 25.4 cm

Material is plain weave fabric with properties:

Ex=Ey=68.94 GPa

νxy=0.05

Gxy=5.17 GPa

ply thickness = 0.19 mm



Load versus center deflection
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In-plane compression load
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• the center of the plate sees very little load!



Implication

• after buckling approximate in-plane load 

 

beff

a

a

peak Nx value

• there is an effective width beff at the edges of the 

panel over which the load is concentrated



Determination of effective width

• total applied force must equal the force created by 

the load applied over the effective width:

   effxx bNdyN max2
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Solving for beff
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Effective width beff
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Significance for design

• beff provides an idea of where failure is expected under 

compression and where reinforcement may be needed

• For (conservative) failure predictions obtain the 

maximum compressive stress

 

h

N x max
max  (h is plate thickness)

• and compare to allowable ultimate compression stress

 
ult max for no failure

• plus one more use in crippling of stiffener flanges 



How good is the analysis compared to 

reality?

• For a meaningful comparison, two conditions must be 

met:

– Boundary conditions in the “test case” must be the same as in 

the model

– Sufficient number of terms must be included in the solution (as 

opposed to only one term used here for simplicity)

• As it is hard to find test results with exactly these 

boundary conditions, FE results are used to validate the 

analysis

• Two different laminates: (a) 45 degree dominated

(b) Quasi-isotropic



Analysis model versus FE (45-dominated 

laminate)

• Results from R. Kroese MS Thesis TUDelft 2013

• Excellent agreement between FE and Analysis

end displa-

cement



Analysis model versus FE (Quasi-isotropic 

laminate)

• Results from R. Kroese MS Thesis TUDelft 2013

• Excellent agreement between FE and Analysis

end displa-

cement



Boundary conditions discussion

• If the stiffeners in a stiffened panel have very high EI and 

very low GJ, and one end is attached to a frame with 

also very high EI and low GJ, this analytical model would 

be quite accurate 

• If not, the model may be conservative or unconservative

• Must also use enough terms in the series and account 

for rectangular as opposed to square panels

stiffener

frame

skin between 

stiffeners


