Beams (Stringers, Stiffeners,
Panel Breakers)

« axial (longitudinal) loads %/f
* bending loads % /

» stiffening elements

» Different cross-sectional shapes
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5.3.1

Beams...cross-section properties

* each section or member can have
dfferent layup =>

— different stiffness
— different strength

» more efficient structure by tailoring
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neutral
axis

y




Beams...Layup Guidelines

(qualitative)

Location

Layup®

Reason

Flange away

O degree plies

need stiff material
away from neutral axis

from skin
Web +45 degree buckling resistance
: under shear; high
plles shear strength

Flange next to
skin

O degree plies and as
close to the skin layup
as possible

Stiff material away
from neutral axis;
reduced stiffness
mismatch with skin

(1) O degrees aligned with axis of beam




Beams...Layup Guidelines
(qualitative)

RN
N
Load continuity +45 a
issues -
A
A\

stiffness mismatch
can lead to stiffener
separation

On




First order correction of beam layup

/\lmpact
damage B
too many { resistance? B 45
0’'s ?7=>
: 0
microcracks
: roximation
s o o
transfer yup
sufficient?

IS stiffness mismatch
sufficiently reduced?

//@

what happens
here?

Improved
design



Second order correction of beam
layup

e to be continued...



Beam cross section properties

* Equivalent axial stifiness (EA),,
* From axial strain compatibility:

b,
{ .
TR
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b, pa
: /
b, L
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F
gx() _ i
(EA); i=1-3
(EA)i - Eibiti
1
| (all)iti

F. is applied force on ith member

E, is membrane stiffness of ith
member

note difference from isotropic case where E is not present!



Beam cross-section properties
(axial loading)

* Force sum:
For =R +F +F;

* Three eqgns in the three unknowns F,-F,

EA ; Eibi'{i
@> Fi = 3( ) FTOT — 3 FTOT
SEN, YEML,
j=1

i=L

* Equivalent axial stiffness:

\

F F
£, = TOT (E A) = TOT
(EA) &,

F _EA),
€a = = Fror
ER, EMY(EA),

L sy (B, =D (EA),




Beam cross-section properties
(bending load)

* Equivalent bending stiffness (El),,

b,
1
2] d,
t,—™ <~
b,
neutral )
axis -
% d, y

E, not present in
isotropic case!

Bending of all members is
characterized by same radius of
curvature (that of beam neutral axis):

Rcl - RCZ = RCS = Rca

R = (El),
Mi
(E), =, (width), (height), .+ Ad?
12
£, - 312
t (dy,),

E,; IS bending stiffness

of ith membeg, ;1 ot for beams
deeper than 1cm!



Beam Cross-section properties
(bending load)

 Moment sum:

Mior =M, +M, +M,-

* Three eqns In the three unknowns M,-M,
(E1),
Mi = M-or analogous to the relation for the
Z(EU,- force on each member

« Equivalent bending stiffness for cross-section:
M I\/ITOT M

(Ell) " (EI) = (Ea =y NED:
o )
_ 1 J




Beam cross-sectional properties:
Example

« same as before but with bottom flange better defined

Member | b (mm) t(mm) | Em (GPa)| Eb (GPa)
1 12.7 1.2192 75.6 32.4
2 31.75 1.2192 18.2 17.9
3 38.1 1.8288 56.5 47.9
Alum Comp A(%)
EA (kN) 8525 5803 46.9
El (Nm”2) 1401 631 121.8

same thickness aluminum
IS more efficient but also
72% heavier

calculated using Eb



Beam cross-sectional properties:
Example (cont'd)

* Increase (ply) thickness of composite by
46.9% and re-shuffle one flange layup:

WAS Layup Member [ b (mm) t (mm) |Em (GPa)| Eb (GPa) WAS
[45/-45/02]s [45/02/-45]s 1 12.7 | 1791005 75.6 62.7 32.4
same [45/-45/45/-45]s 2 31.75 [1.791005] 18.2 17.9 17.9
same [45/-45/02/45/-45]s 3 38.1 |[2.686507| 56.5 47.9 47.9
Alum Comp A(%)
EA (kN) 8525 8525 0.0
El (Nm"2) 1401 1441 2.8
Wer g 1.469 composite matches Al
=0,58=—— =0.852 : - ko
W, 1 properties and is 15%
lighter!

density ratio for carbon/epoxy



5.3.2

Beams - Column buckling
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L

both ends pinned

both ends fixed El calculated as before but with

E.embrane TOr Duckling calculation



Column buckling — Effect of BCs
and loading , _cre

er E
Configuration BC at left,right end C
"/ 7 pinned, pinned 1.88
(o= < fixed, fixed 7.56
4 2 fixed, pinned 2.05
(o= 2 fixed, pinned 5.32
3 ‘ fixed, free 0.25
= fixed, free 0.80

free: free rotation and free translation
pinned: free rotation, fixed translation

fixed: fixed rotation, fixed translation



Beam on elastic foundation under
compression

G, | L }Gz

P Bending stiffness EI———> P
— —
] Sos5 S22 S S S S S S S S S S S S Se e

Spring constant k

* Foundation with spring constant k (appropriate units)

« Ends with different translational and rotational spring
constants (BC's)

Governing Equation

4 2
d W+Pd W

dx* dx?

El +kw=0



Beam on elastic foundation under
compression

« can solve ODE which gives solutions of the form

w=Ae®
> Combinations of sines, cosines,
_Pi\/(Pj _ 4 [II]:> and exponentials depending on
oot El El) El the magnitudes of P and k
2

satisfying the BC'’s leads to a
4x4 eigenvalue problem in the
buckling load P



Beam on elastic foundation under
compression (pinned ends)

 or, which iIs faster, can use an energy approach
* The total energy in the beam is given by

L 2. \? L 2 L
I, =EIEI d \;V dx+£j(—P)(d—Wj dx+lj‘szdx
2+ \dX 2 dx 2+

0

N J\ J
\ N J N v
bending potential external work spring potential
energy energy

« Assume deflection w In the form

. maX Satisfies the BC’s
w=>Y" A, sin - {

also happens to be
the exact solution

A, are unknown coefficients



Beam on elastic foundation under
compression (pinned ends)

« Substitute In the energy expression and
note the following:

[ZAm sin mTﬂX_ => > A A sin mlizx sin 7%

L

sin asinﬂ=%(cos(a—ﬂ)—cos(a+,8)) a+
:%(1—c052a) a=p
COS 1 COS f3 = %(cos(a —p)+cos(a+f)) a=+p

=%(l+ COSZa) a=p



Beam on elastic foundation under
compression (pinned ends)

* Energy expression becomes:
o :Z{(El)m“ﬁ“ _Pm?z® kL}Amz

413 4L 4

* Minimizing with respect to A;:

o, _,
OA,
e leads to:

2{(El)m47z4 _Pm*z® kL

=0
41° 4L 4 }Am



Beam on elastic foundation under
compression (pinned ends)

» which after rearranging reads

{ﬁa(m% kL* j—P}A,ﬁO
\L 7*(El)m /\

diagonal matrix column vector

either A,=0 (trivial solution, no bending)

or the determinant of the diagonal matrix =0
* set

2 4
K - T 2EI m2 4 : kL :
L 7*(El)m




Solution (buckling load of beam on
elastic foundation)

K, —P 0 0 0 0](A |
0 Kuy-P 0 0 0f||lA
0 0 Ko—P 0 0F .. t=0
0 0 0
0 0 .
=) (Kll_P)(KZZ_P)(KBB_P) =0

P, =min(K,;)



Special case: k=0
* pinned beam under compression

2 4
7 El k
P, =K, = m? +
“ m LZ( z |)m2j

e minimized for m=1 => exact solution for
buckling load



Beam on elastic foundation under
compression (pinned ends)

* the dependence of the buckling load on the spring
constant k can be seen mare easily in a graph.

L] I, 4\\\
Rearranging: Pu e/ K1
7°El " El/m?
2 N
PC
40 g Bl
35 £.L m=
30 4 m=5
25 4
20 4 / m=4
C e —
10 £M=3
s 7'El
0O F——m—— ! ! ' ]
0 10 20 30 40 50




Beam on elastic foundation: other
BC’s

« ref: Aristizabal-Ochoa, J.D. “Classical stability of beam columns with semi-rigid connections on
elastic foundation” American Soc. Civil Engineers, 16th Engr Mechanics Conf., 2003, paper 67

®
|
2

P Bending stiffness EI———> P

Spring constant k

 general BC’s at the two ends (moment and shear force balance):

dw dw R
— El dXZ +G1&=0
4 ; > at x=0
BV P Kw=0
dx dx _/
2
u 8,6, M g A
dx dx ¢ ]
3 > al X=
e 9 p MW w=0
dx dx




Beam on elastic foundation: Other
BC’s
e Deflne:
5 _GiL

" El
1 |
Pi = 3 p=1 => fixed
1+ E p=0 => pinned

« w=0 at both ends; dw/dx specified at one end
(0<p,=1) and pinned at the other (p,=0)




Beam on elastic foundation: other

BC’s

p,=0

600
500
400 +
300
200 +

100 —

=y different
values of p,

/kL4
— =X
El

0 & 500 1000 1500 2000 2500

3000

& see next Figure




Beam on elastic foundation: other BC’s

P,=0




Beam on elastic foundation: Other

BC’s

p,=0
o X y r’ (goodness
of fit)

0 0=x=20 0.0099x? + 0.0041x +1 1.0000

0 20<x=100 0.0004x? +0.1517x +1.6658 0.9987
0.5 0=x=20 0.0084x2 +0.0169 +1.4069 1.0000
0.5 20<x=100 0.0002x2 +0.1714x +1.4518 0.9988

1 0=x=20 0.0069%% +0.01134x+2.046 |  1-0000

1 20<x=100 7X107° X% +0.1924x +1.2722 0.9998




Beam on elastic foundation: Other

BC’s

P1= P> X y r’ (goodness

of fit)

0.2 0<x<20 0.0099x° +0.0039x +1.28 1.0000

0.2 20<x<100 0.0004x? +0.1517x +1.9512 0.9987

0.5 O=x=20 0.0099x° +0.0019x+1.916 |  1.0000
0.5 20<x<100 0.0003x2 +0.1539x + 2.5361 0.999

1 0<x<20 0.0051x? + 0.0265x + 4 1.0000

1 20<x<100 —0.0003x? +0.2385x + 2.3368 0.9943




5.3.3

Beams under combined
compression and bending

Mp

.e,

Governing equation (same as for beam on elastic foundation with k=0):

2

L

4 2
£ 9 Ly d oo
dx dx
Solution

w=C, +C;sin ,/ix +C, cos ,/ix +C,X
El El

C,, C,, C,, and C; determined from BC'’s



Beams under combined
compression and bending

« “Traditional” superposition is NOT applicable
— — () & va

* nor can one separate bending from axial
deformations: ' o

Q - <_> > Q E $’V

cannot calculate u from P and w from M!

* why Is the problem non-linear?



Beams under combined
compression and bending

* special type of “superposition” is applicable:

— since the source of non-linearity is in the axial
load, If the axial load is kept equal to P in each
constituent problem, superposition is valid

Example:

the full compressive load
applied on each case



