Beams (Stringers, Stiffeners, Panel Breakers)

- axial (longitudinal) loads
- bending loads
- stiffening elements

- Different cross-sectional shapes

"L" or "C" or angle channel

"Z"

"T" or blade

" "

"J"

"Hat"

Beams...cross-section properties

Beams...Layup Guidelines (qualitative)

Location	Layup(1)	Reason
Flange away from skin	0 degree plies	need stiff material away from neutral axis
Web	± 45 degree plies	buckling resistance under shear; high shear strength
Flange next to skin	0 degree plies and as close to the skin layup as possible	Stiff material away from neutral axis; reduced stiffness mismatch with skin

(1) 0 degrees aligned with axis of beam

Beams...Layup Guidelines

(qualitative)

First order correction of beam layup

Second order correction of beam layup

- to be continued...

Beam cross section properties

- Equivalent axial stiffness $(E A)_{\text {eq }}$
- From axial strain compatibility:

$$
\begin{aligned}
& \varepsilon_{x}^{(1)}=\varepsilon_{x}^{(2)}=\varepsilon_{x}^{(3)}=\varepsilon_{a} \\
& \varepsilon_{x}^{(i)}=\frac{F_{i}}{(E A)_{i}} \quad \mathrm{i}=1-3 \\
& (E A)_{i}=E_{i} b_{i} t_{i} \\
& E_{i}=\frac{1}{\left(a_{11}\right)_{i} t_{i}}
\end{aligned}
$$

F_{i} is applied force on ith member
E_{i} is membrane stiffness of ith member
note difference from isotropic case where E is not present!

Beam cross-section properties (axial loading)

- Force sum:

$$
F_{T O T}=F_{1}+F_{2}+F_{3}
$$

- Three eqns in the three unknowns $F_{1}-F_{3}$

- Equivalent axial stiffness:

$$
\left.\begin{array}{l}
\varepsilon_{a}=\frac{F_{\text {TOT }}}{(E A)_{e q}} \Rightarrow(E A)_{e q}=\frac{F_{\text {TOT }}}{\varepsilon_{a}} \\
\varepsilon_{a}=\frac{F_{1}}{(E A)_{1}}=\frac{(E A)_{1}}{(E A)_{1} \sum(E A)_{j}} F_{\text {TOT }}
\end{array}\right\} \Longleftrightarrow(E A)_{e q}=\sum_{j}(E A)_{j}
$$

Beam cross-section properties (bending load)

- Equivalent bending stiffness $(E I)_{\text {eq }}$

Bending of all members is characterized by same radius of curvature (that of beam neutral axis):

$$
\begin{aligned}
& R_{c 1}=R_{c 2}=R_{c 3}=R_{c a} \\
& R_{c i}=\frac{(E I)_{i}}{M_{i}} \\
& (E I)_{i}=E_{b_{i}}\left[\frac{\left(\text { width }_{i}(\text { height })_{i}^{3}\right.}{12}+A_{i} d_{i}^{2}\right] \\
& E_{b i}=\frac{12}{t_{i}^{3}\left(d_{11}\right)_{i}}
\end{aligned}
$$

E_{bi} is bending stiffness
of ith member U UT not for beams deeper than 1 cm !

Beam Cross-section properties (bending load)

- Moment sum:

$$
M_{\text {TOT }}=M_{1}+M_{2}+M_{3}
$$

- Three eqns in the three unknowns $\mathrm{M}_{1}-\mathrm{M}_{3}$

$$
M_{i}=\frac{(E I)_{i}}{\sum_{j=1}^{3}(E I)_{j}} M_{\text {Тот }} \quad \begin{aligned}
& \text { analogous to the relation for the } \\
& \text { force on each member }
\end{aligned}
$$

- Equivalent bending stiffness for cross-section:

Beam cross-sectional properties: Example

- same as before but with bottom flange better defined

Beam cross-sectional properties: Example (cont'd)

- increase (ply) thickness of composite by 46.9% and re-shuffle one flange layup:

WAS	Layup	Member	$\mathrm{b}(\mathrm{mm})$	$\mathrm{t}(\mathrm{mm})$	Em (GPa)	Eb (GPa)	WAS
$[45 /-45 / 02] \mathrm{s}$	$[45 / 02 /-45] \mathrm{s}$	1	$\mathbf{1 2 . 7}$	1.791005	75.6	$\mathbf{6 2 . 7}$	$\mathbf{3 2 . 4}$
same	$[45 /-45 / 45 /-45] \mathrm{s}$	2	$\mathbf{3 1 . 7 5}$	1.791005	18.2	17.9	17.9
same	$[45 /-45 / 02 / 45 /-45] \mathrm{s}$	3	$\mathbf{3 8 . 1}$	2.686507	56.5	47.9	47.9

	Alum	Comp	$\Delta(\%)$
EA (kN)	8525	8525	0.0
$\mathrm{EI}\left(\mathrm{Nm}^{\wedge} 2\right)$	1401	1441	-2.8

$\frac{W_{G r / E p}}{W_{A l}}=0.58 \frac{1.469}{1}=0.852$
density ratio for carbon/epoxy
composite matches AI properties and is 15% lighter!

Beams - Column buckling

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}}
$$

both ends pinned

both ends fixed

Column buckling - Effect of BCs and loading
 $$
P_{\alpha}=\frac{c \pi^{2} E l}{L^{2}}
$$

Configuration	BC at left,right end	C
$\rightarrow \triangle{ }^{\text {a }}$	pinned, pinned	1.88
$\rightarrow \rightleftharpoons \rightleftharpoons \sim \sim$	fixed, fixed	7.56
\rightarrow -	fixed, pinned	2.05
\rightarrow ¢	fixed, pinned	5.32
\rightarrow -	fixed, free	0.25
$\stackrel{\sim}{*}$	fixed, free	0.80

free: free rotation and free translation
pinned: free rotation, fixed translation
fixed: fixed rotation, fixed translation

Beam on elastic foundation under compression

- Foundation with spring constant k (appropriate units)
- Ends with different translational and rotational spring constants (BC's)

Governing Equation

$$
E I \frac{d^{4} w}{d x^{4}}+P \frac{d^{2} w}{d x^{2}}+k w=0
$$

Beam on elastic foundation under compression

- can solve ODE which gives solutions of the form

$$
\begin{aligned}
w & =A e^{p x} \\
p & = \pm \sqrt{\frac{-\frac{P}{E I} \pm \sqrt{\left(\frac{P}{E I}\right)^{2}-\frac{4 k}{E I}}}{2}}
\end{aligned}
$$

Combinations of sines, cosines, and exponentials depending on the magnitudes of P and k
satisfying the BC's leads to a
4×4 eigenvalue problem in the buckling load P

Beam on elastic foundation under compression (pinned ends)

- or, which is faster, can use an energy approach
- The total energy in the beam is given by

$$
\Pi_{c}=\underbrace{\frac{1}{2} \int_{0}^{L} E I\left(\frac{d^{2} w}{d x^{2}}\right)^{2}}_{\substack{\text { bending potential } \\
\text { energy }}} d x+\underbrace{\frac{1}{2} \int_{0}^{L}(-P)\left(\frac{d w}{d x}\right)^{2} d x}_{\text {external work }}+\underbrace{\frac{1}{2} \int_{0}^{L} k w^{2} d x}_{\begin{array}{c}
\text { spring potential } \\
\text { energy }
\end{array}}
$$

- Assume deflection w in the form

$$
w=\sum A_{m} \sin \frac{m \pi x}{L} \quad\left\{\begin{array}{l}
\text { Satisfies the BC's } \\
A_{\mathrm{m}} \text { are unknown coefficients }
\end{array}\right.
$$

Beam on elastic foundation under compression (pinned ends)

- Substitute in the energy expression and note the following:

$$
\begin{aligned}
& {\left[\sum A_{m} \sin \frac{m \pi x}{L}\right]^{2}=\sum \sum A_{m} A_{n} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L}} \\
& \begin{aligned}
\sin \alpha \sin \beta & =\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)) \alpha \neq \beta \\
& =\frac{1}{2}(1-\cos 2 \alpha) \alpha=\beta \\
\cos \alpha \cos \beta & =\frac{1}{2}(\cos (\alpha-\beta)+\cos (\alpha+\beta)) \alpha \neq \beta \\
& =\frac{1}{2}(1+\cos 2 \alpha) \quad \alpha=\beta
\end{aligned}
\end{aligned}
$$

Beam on elastic foundation under compression (pinned ends)

- Energy expression becomes:

$$
\Pi_{c}=\sum\left[\frac{(E I) m^{4} \pi^{4}}{4 L^{3}}-\frac{P m^{2} \pi^{2}}{4 L}+\frac{k L}{4}\right] A_{m}^{2}
$$

- Minimizing with respect to A_{m} :

$$
\frac{\partial \Pi_{c}}{\partial A_{m}}=0
$$

- leads to:

$$
2\left[\frac{(E I) m^{4} \pi^{4}}{4 L^{3}}-\frac{P m^{2} \pi^{2}}{4 L}+\frac{k L}{4}\right] A_{m}=0
$$

Beam on elastic foundation under compression (pinned ends)

- which after rearranging reads

$$
\underbrace{\left[\frac{\pi^{2} E I}{L^{2}}\left(m^{2}+\frac{k L^{4}}{\pi^{4}(E I) m^{2}}\right)-P\right]}_{\text {diagonal matrix }} \underbrace{A_{m}=0}_{\text {column vector }}
$$

- either $\mathrm{A}_{\mathrm{m}}=0$ (trivial solution, no bending)
- or the determinant of the diagonal matrix $=0$
- set

$$
K_{m m}=\frac{\pi^{2} E I}{L^{2}}\left(m^{2}+\frac{k L^{4}}{\pi^{4}(E I) m^{2}}\right)
$$

Solution (buckling load of beam on elastic foundation)

$$
\left[\begin{array}{ccccc}
K_{11}-P & 0 & 0 & 0 & 0 \\
0 & K_{22}-P & 0 & 0 & 0 \\
0 & 0 & K_{33}-P & 0 & 0 \\
0 & 0 & 0 & \ldots & \\
0 & 0 & \ldots & \ldots & \ldots
\end{array}\right]\left\{\begin{array}{c}
A_{1} \\
A_{2} \\
\cdots \\
\cdots \\
\ldots
\end{array}\right\}=0
$$

$$
\leftrightarrow\left(K_{11}-P\right)\left(K_{22}-P\right)\left(K_{33}-P\right) \ldots=0
$$

$\| \quad P_{c r}=\min \left(K_{i i}\right)$

Special case: k=0

- pinned beam under compression

$$
\begin{aligned}
& P_{c r}=K_{n m}=\frac{\pi^{2} E I}{L^{2}}\left(m^{2}+\frac{k v^{4} \sqrt{4}}{\pi^{4}(E I) m^{2}}\right) \\
& P_{c r}=\frac{\pi^{2} E I}{L^{2}} m^{2}
\end{aligned}
$$

- minimized for $\mathrm{m}=1$ => exact solution for buckling load

Beam on elastic foundation under compression (pinned ends)

- the dependence of the buckling load on the spring constant k can be seen more easily in a graph.
Rearranging: $\quad \frac{P_{r}}{\frac{\pi^{2} E I}{L^{2}}}=m^{2}+\frac{k L^{4}}{\pi^{4} E I} \frac{1}{m^{2}}$

Beam on elastic foundation: other BC's

- ref: Aristizabal-Ochoa, J.D. "Classical stability of beam columns with semi-rigid connections on elastic foundation" American Soc. Civil Engineers, 16th Engr Mechanics Conf., 2003, paper 67

- general BC's at the two ends (moment and shear force balance):

$$
\left.\begin{array}{l}
-E I \frac{d^{2} w}{d x^{2}}+G_{1} \frac{d w}{d x}=0 \\
E I \frac{d^{3} w}{d x^{3}}+P \frac{d w}{d x}+K_{1} w=0 \\
-E I \frac{d^{2} w}{d x^{2}}+G_{2} \frac{d w}{d x}=0 \\
E I \frac{d^{3} w}{d x^{3}}+P \frac{d w}{d x}+K_{2} w=0
\end{array}\right\} \text { at } \mathrm{x}=0
$$

Beam on elastic foundation: Other BC's

- Define:

$$
\begin{aligned}
& R_{i}=\frac{G_{i} L}{E I} \\
& \rho_{i}=\frac{1}{1+\frac{3}{R_{i}}} \quad\left\{\begin{array}{l}
\rho=1=>\text { fixed } \\
\rho=0=>\text { pinned }
\end{array}\right.
\end{aligned}
$$

- $\mathrm{w}=0$ at both ends; $\mathrm{dw} / \mathrm{dx}$ specified at one end $\left(0 \leq \rho_{2} \leq 1\right)$ and pinned at the other ($\rho_{1}=0$)

Beam on elastic foundation: other BC's

Beam on elastic foundation: other BC's

Beam on elastic foundation: Other BC's

$$
\rho_{1}=0
$$

ρ_{2}	x	y	r^{2} (goodness of fit)
0	$0 \leq x \leq 20$	$0.0099 x^{2}+0.0041 x+1$	1.0000
0	$20<x \leq 100$	$0.0004 x^{2}+0.1517 x+1.6658$	0.9987
0.5	$0 \leq x \leq 20$	$0.00184 x^{2}+0.0169 x+1.4069$	1.0000
0.5	$0 \leq x \leq 20$	$0.0069 x^{2}+0.01134 x+2.046$	1.0000
1	$20<x \leq 100$	$7 x 10^{-5} x^{2}+0.1924 x+1.2722$	0.9998
1			$0.0002 x^{2}+0.1714 x+1.4518$

Beam on elastic foundation: Other BC's

$\rho_{1}=\rho_{2}$	x	y	r^{2} (goodness of fit)
0.2	$0 \leq x \leq 20$	$0.0099 x^{2}+0.0039 x+1.28$	1.0000
0.2	$20<x \leq 100$	$0.0004 x^{2}+0.1517 x+1.9512$	0.9987
0.5	$0 \leq x \leq 20$	$0.0099 x^{2}+0.0019 x+1.916$	1.0000
0.5	$0 \leq x \leq 20$	$0.0051 x^{2}+0.0265 x+4$	1.0000
1	$20<x \leq 100$	$-0.0003 x^{2}+0.2385 x+2.3368$	0.9943
1			0.999

Beams under combined compression and bending

Governing equation (same as for beam on elastic foundation with $\mathrm{k}=0$):
$E I \frac{d^{4} w}{d x^{4}}+P \frac{d^{2} w}{d x^{2}}=0$
Solution

$$
w=C_{o}+C_{1} \sin \left(\sqrt{\frac{P}{E I}} x\right)+C_{2} \cos \left(\sqrt{\frac{P}{E I}} x\right)+C_{3} x
$$

$\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} determined from BC's

Beams under combined compression and bending

- "Traditional" superposition is NOT applicable

- nor can one separate bending from axial deformations:

cannot calculate u from P and w from M !
- why is the problem non-linear?

Beams under combined compression and bending

- special type of "superposition" is applicable:
- since the source of non-linearity is in the axial load, if the axial load is kept equal to P in each constituent problem, superposition is valid

Example:

