
Beams (Stringers, Stiffeners, 

Panel Breakers)

• axial (longitudinal) loads

• bending loads

• stiffening elements

• Different cross-sectional shapes

“L” or 

angle

“C” or 

channel
“Z”

“T” or 

blade
“I” “J” “Hat”



Beams…cross-section properties

• each section or member can have 

dfferent layup =>

– different stiffness

– different strength

• more efficient structure by tailoring
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Beams…Layup Guidelines 

(qualitative)

Location Layup(1) Reason

Flange away 

from skin

0 degree plies need stiff material 

away from neutral axis

Web ±45 degree 

plies

buckling resistance 

under shear; high 

shear strength

Flange next to 

skin

0 degree plies and as 

close to the skin layup 

as possible

Stiff material away 

from neutral axis; 

reduced stiffness 

mismatch with skin

(1) 0 degrees aligned with axis of beam



Beams…Layup Guidelines 

(qualitative)
0n

±45m

A/0p/A

Skin layup A/A

Load continuity 

issues

?

stiffness mismatch 

can lead to stiffener 

separation

Bad 

Design!



First order correction of beam layup

+45

-45

0

approximation 

to skin layup

too many 

0’s ?=> 

microcracks

impact 

damage 

resistance?

is load 

transfer 

sufficient?

is stiffness mismatch 

sufficiently reduced?

skin

Improved 

design

what happens 

here?



Second order correction of beam 

layup

• to be continued…



Beam cross section properties

• Equivalent axial stiffness (EA)eq

• From axial strain compatibility:
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Fi is applied force on ith member

Ei is membrane stiffness of ith 

member

i=1-3
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Beam cross-section properties 

(axial loading)

• Force sum:

• Three eqns in the three unknowns F1-F3

• Equivalent axial stiffness:
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Beam cross-section properties 

(bending load)

• Equivalent bending stiffness (EI)eq
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Eb not present in 

isotropic case!

Bending of all members is 

characterized by same radius of 

curvature (that of beam neutral axis):

Ebi is bending stiffness 

of ith member
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BUT not for beams 

deeper than 1cm!



Beam Cross-section properties 

(bending load)

• Moment sum:

• Three eqns in the three unknowns M1-M3

• Equivalent bending stiffness for cross-section:
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analogous to the relation for the 

force on each member 
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Beam cross-sectional properties: 

Example
• same as before but with bottom flange better defined
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0
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45

1
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ỹ=7.17mm

same thickness aluminum 

is more efficient but also 

72% heavier

Member b (mm) t (mm) Em (GPa) Eb (GPa)

1 12.7 1.2192 75.6 32.4

2 31.75 1.2192 18.2 17.9

3 38.1 1.8288 56.5 47.9

Alum Comp Δ(%)

EA (kN) 8525 5803 46.9

EI (Nm^2) 1401 631 121.8

calculated using Eb



Beam cross-sectional properties:  

Example (cont’d)

• increase (ply) thickness of composite by 

46.9% and re-shuffle one flange layup:

composite matches Al 

properties and is 15% 

lighter!

WAS Layup Member b (mm) t (mm) Em (GPa) Eb (GPa) WAS

[45/-45/02]s [45/02/-45]s 1 12.7 1.791005 75.6 62.7 32.4

same [45/-45/45/-45]s 2 31.75 1.791005 18.2 17.9 17.9

same [45/-45/02/45/-45]s 3 38.1 2.686507 56.5 47.9 47.9

 
852.0

1

469.1
58.0

/


Al

EpGr

W

W

density ratio for carbon/epoxy

Alum Comp Δ(%)

EA (kN) 8525 8525 0.0

EI (Nm^2) 1401 1441 -2.8



Beams - Column buckling
5.3.2
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both ends pinned
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L

P

both ends fixed
EI calculated as before but with 

Emembrane for buckling calculation



Column buckling – Effect of BCs 

and loading

Configuration BC at left,right end c

pinned, pinned 1.88

fixed, fixed 7.56

fixed, pinned 2.05

fixed, pinned 5.32

fixed, free 0.25

fixed, free 0.80

 

2

2

L

EIc
Pcr




free: free rotation and free translation

pinned: free rotation, fixed translation

fixed: fixed rotation, fixed translation



Beam on elastic foundation under 

compression

• Foundation with spring constant k (appropriate units)

• Ends with different translational and rotational spring 
constants (BC’s)
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Bending stiffness EI

Spring constant k

x



Beam on elastic foundation under 

compression

• can solve ODE which gives solutions of the form
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Combinations of sines, cosines, 

and exponentials depending on 

the magnitudes of P and k

satisfying the BC’s leads to a 

4x4 eigenvalue problem in the 

buckling load P



Beam on elastic foundation under 

compression (pinned ends)

• or, which is faster, can use an energy approach

• The total energy in the beam is given by
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bending potential 

energy

external work spring potential 

energy

• Assume deflection w in the form

also happens to be 

the exact solution
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Satisfies the BC’s

Am are unknown coefficients



Beam on elastic foundation under 

compression (pinned ends)

• Substitute in the energy expression and 

note the following:
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Beam on elastic foundation under 

compression (pinned ends)

• Energy expression becomes:
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• Minimizing with respect to Am:
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Beam on elastic foundation under 

compression (pinned ends)

• either Am=0 (trivial solution, no bending)

• or the determinant of the diagonal matrix = 0

• which after rearranging reads
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• set



Solution (buckling load of beam on 

elastic foundation)
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Special case: k=0

• pinned beam under compression
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• minimized for m=1 => exact solution for 

buckling load



Beam on elastic foundation under 

compression (pinned ends)

• the dependence of the buckling load on the spring 

constant k can be seen more easily in a graph. 

Rearranging:
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Beam on elastic foundation: other 

BC’s
• ref: Aristizabal-Ochoa, J.D. “Classical stability of beam columns with semi-rigid connections on 

elastic foundation” American Soc. Civil Engineers, 16th Engr Mechanics Conf., 2003, paper 67

P P

K1
K2

G1 G2
L

Bending stiffness EI

Spring constant k

x

• general BC’s at the two ends (moment and shear force balance):
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Beam on elastic foundation: Other 

BC’s

• w=0 at both ends; dw/dx specified at one end 

(0≤ρ2≤1) and pinned at the other (ρ1=0) 

• Define:
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 ρ=1 => fixed

ρ=0 => pinned



Beam on elastic foundation: other 

BC’s
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see next Figure
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Beam on elastic foundation: other BC’s



Beam on elastic foundation: Other 

BC’s
ρ2 x y r2 (goodness 

of fit)

0 0≤x≤20 1.0000

0 20<x≤100 0.9987

0.5 0≤x≤20 1.0000

0.5 20<x≤100 0.9988

1 0≤x≤20 1.0000

1 20<x≤100 0.9998

ρ1=0

 10041.00099.0 2  xx

 6658.11517.00004.0 2  xx

 4069.10169.00004.0 2  xx

 4518.11714.00002.0 2  xx

 046.201134.00069.0 2  xx

 2722.11924.0107 25  xxx

8



Beam on elastic foundation: Other 

BC’s
ρ1= ρ2 x y r2 (goodness 

of fit)

0.2 0≤x≤20 1.0000

0.2 20<x≤100 0.9987

0.5 0≤x≤20 1.0000

0.5 20<x≤100 0.999

1 0≤x≤20 1.0000

1 20<x≤100 0.9943

 28.10039.00099.0 2  xx

 9512.11517.00004.0 2  xx

 916.10019.00099.0 2  xx

 5361.21539.00003.0 2  xx

 40265.00051.0 2  xx

 3368.22385.00003.0 2  xx



Beams under combined 

compression and bending

M MP P

L
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Governing equation (same as for beam on elastic foundation with k=0):

Solution
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Co, C1, C2, and C3 determined from BC’s

5.3.3



Beams under combined 

compression and bending 

• “Traditional” superposition is NOT applicable

+ ≠

• why is the problem non-linear?

• nor can one separate bending from axial 

deformations: u

w

cannot calculate u from P and w from M!

M

P



Beams under combined 

compression and bending

• special type of “superposition” is applicable:

– since the source of non-linearity is in the axial 

load, if the axial load is kept equal to P in each 

constituent problem, superposition is valid

Example:

P

V M

P

V

P

M
= +

the full compressive load 

applied on each case


