Example: Flatwise compression of sandwich with Gr pins for core

Individual pin under flatwise load

After some algebra:

$$M = \frac{\ell}{2} (F_a \cos \theta - S \sin \theta)$$
$$\beta = \sqrt{\frac{P}{E_p I_p}}$$

$$M_{1} = -\frac{\ell}{2} (F_{a} \cos \theta - S \sin \theta) \frac{\sin \beta \ell}{\sin \beta \ell - \beta \ell (1 + \cos \beta \ell)}$$
$$S_{1} = \beta \frac{\ell}{2} (F_{a} \cos \theta - S \sin \theta) \frac{1 + \cos \beta \ell}{\sin \beta \ell - \beta \ell (1 + \cos \beta \ell)}$$
$$S_{2} = \frac{2 \sin \beta \ell - \beta \ell (1 + \cos \beta \ell)}{2 (\sin \beta \ell - \beta \ell (1 + \cos \beta \ell))} (-F_{a} \cos \theta + S \sin \theta)$$

• Perhaps the most common stiffener failure and one of the most common failure modes in a fuselage

Fuselage failure modes by %

 in a good design, stiffeners do not fail by column buckling but by flange crippling

 if column buckling is an issue, the effective beam length is decreased and/or the bending stiffness of the stiffener is increased until flange crippling becomes the primary failure mode

Reason: in column buckling the entire stiffener is "gone". In stiffener crippling, local flange failure occurs which may be confined in one flange, without immediate failure of entire stiffener, to absorb enough of a crash load to protect passengers

 stiffener crippling occurs when one or more flanges buckle in a local buckling mode with wavelength unrelated to the length of the beam

- ideally, one first obtains the individual loads on each flange
- then computes short-wavelength buckling load of the flange of interest,
- then goes through a post-buckling solution similar to the one for plate under compression
- determine load for final failure
- very cumbersome (plus modelling issues with radius regions)

Distinguish two cases:
 – One-Edge-Free (OEF)
 – No-Edge-Free (NEF)

if an edge is not supported or stabilized by another member of the cross-section (or via other means) it is free

OEF Crippling OEF OEF OEF

For OEF, the buckling problem has been solved before as the case of a very long plate under compression with <u>three sides simply supported and</u> <u>one side free</u>

OEF crippling - predictions

buckling load was found to be

$$N_{xcrit} = \frac{12D_{66}}{b^2} \text{ exact expression}$$
$$N_{xcrit} = \frac{4\pi^2}{b^2} \lambda^2 D_{66} + \frac{2\pi^2}{b^2} D_{12} \text{ , } \lambda = 5/12$$

our approx. expression

• therefore, to maximize the crippling load of a flange of given width b, one must maximize D₆₆ for the flange.

what does that imply for the flange layup? and how does this implication match our requirement for high I for the entire cross-section?

OEF Crippling: Buckling versus Final Failure; Comparisons with test results

Test results from Mil-Hdbk 17-3F, vol 3, ch 5, Fig 5.7.2.h, Jun 17, 2002

OEF crippling: test vs theory

• irrespective of layup, test results follow a single curve:

preliminary design curve (valid for at least 25%0, 25%45) b/t>2.9

- predictions are a function of layup
- approx. predictions are close to exact theoretical predictions

OEF crippling design curve

OEF crippling – Test vs Theory (cont'd)

 predictions are very conservative especially for high b/t values (recall plates have high post-buckling ability)

 for low b/t values, effect of radii and transverse shear effects (not included in the predictions) may be important

NEF Crippling

This is the case of a long plate under compression, simply-supported all around which was solved before as part of the biaxially loaded plate

NEF crippling - predictions

buckling load was found to be

$$N_{o} = \frac{\pi^{2} \Big[D_{11} m^{4} + 2(D_{12} + 2D_{66}) m^{2} n^{2} (AR)^{2} + D_{22} n^{4} (AR)^{4} \Big]}{a^{2} (m^{2} + kn^{2} (AR)^{2})}$$

• which for k=0 and n=1 can be rearranged to:

$$N_{xcrit} = \frac{\pi^2}{b^2} \sqrt{D_{11}D_{22}} \left[\sqrt{\frac{m^2b^2}{a^2}} + \frac{2(D_{12} + 2D_{66})}{\sqrt{D_{11}D_{22}}} + \sqrt{\frac{D_{22}}{b^2}} \frac{a^2}{a^2} \right]$$

• and for a very long plate,

$$N_{xcrit} = \frac{2\pi^2}{b^2} \left[\sqrt{D_{11}D_{22}} + (D_{12} + 2D_{66}) \right]$$

it still "pays" to have ±45 plies
away from the mid-plane as in
the OEF condition

NEF Crippling: Buckling versus Final Failure; Comparisons with test results

Test results from Mil-Hdbk 17-3F, vol 3, ch 5, Fig 5.7.2.f, Jun 17, 2002

NEF crippling: test vs theory

• irrespective of layup, test results follow a single curve:

b/t≥8.5

- predictions are a function of layup
- predictions are very conservative especially for high b/t values (recall plates have high post-buckling ability) for low b/t values, effect of radii and transv shear effects (not included in the predictions) may be important

NEF crippling design curve

Stiffener crippling – Other considerations

• closed section stiffeners:

- hollow: analysis as before
- filled (with foam for example): see section on sandwich

Stiffener crippling – Other considerations

 stiffeners under bending moment loads => flanges in bending

Crippling of flanges in bending

 determine the normal stress distribution on the flange of interest

Crippling of flanges in bending

- determine the portion that is under compression and find the extreme stresses $\sigma_{\text{cmax}}\,\sigma_{\text{cmin}}$

Crippling of flanges in bending

• determine average compr. stress and analyze as a flange in compression

Crippling: importance of radius regions

without special provisions, this region fills with resin => weaker

Crippling: importance of radius regions

 significant improvement is obtained by filling the radius region with stiff material (uni-directional tape for example)

$$A_{f} = 2 \left[R_{i} + \frac{t}{2} \right]^{2} \left(1 - \frac{\pi}{4} \right)$$
$$F_{f} = \frac{E_{f} A_{f}}{\sum E_{i} A_{i}} F_{TOT}$$

Crippling: Effect of filler material in radius regions

E_f ranges from 3GPa (pure resin) to 138 GPA (0 degree tape)

R_i ranges from 2.5mm-6.35mm

E₁=89.6GPa

E₂= 31.0GPa

E₃=48.3GPa

Crippling: Effect of filler stiffness and radius

