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Lady and Gentlemen,

In this short note an expression is given for the natural period of a stepped tower. This
expression will be used in the cost model of Tim. The expression is determined from
two influences which are assumed to be uncorrelated. The first is the bending of the
tower. Second is the foundation influence which is assumed to be of a small to
moderate influence compared to bending. The derivation is given below. Those who
belief us right away: the expression is given in equation (10) on page 5. The equation
is equally valid for a stepped monotower and for a lattice tower structure; only the
determination of /; and m; is different.

Regards,
Jan Vugts and Léon Harland

H Bending influence

Basis of the derivation is a stepped tower
with n segments, e.g. n=5 in the figure. It
is assumed that the length /; (m), the
Xit1 moment of inertia /, (m®) and the
distributed mass m; (kg/m) are known
for each segment.

: element ;
4 e
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b The basic equation (1) on the next page
is obtained from Rayleigh’s method

X 5 using the principle of equating maximum

, potential and maximum Kinetic energy in

I the vibration mode. For further detail see

: ‘Dynamics of structures’ by Clough and

Y ! Penzien.
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The numerator in (1) represents the generalised stiffness and the denominator the
generalised mass.

0= (D

The displacement at any point and time:

X
A z(t) v(x,t) = LI’(Jc)z(t)

d /'/ - z(t)= Z,sin(wt) = top displacement used as a
L7 normalisating factor for the mode shape.
— -

' The mode shape is to be assumed, as an

/ approximation to the true mode shape which is,

! of course, unknown. However, the method is not
very sensitive to the assumption made. The

p»-V  assumed mode shape must in any event satisfy
the boundary conditions, at least geometrically.

Y(x) is non-dimensional and found from:
v(x,t)

z(¢)

The exact mode shape for the vibration in bending of a uniform beam is taken as an
approximation (2):

#o)=(1-o{ )

Over each segment of the stepped beam m(x) and I(x) are constant, whereas W(x) and
W"(x) will be approximated at mid length and taken as constant. (y”(x) is trivial to
determine). Substitution into equation (1) gives:

Ell
. cos [ZL)
E-

Y(x)=

2 [

&)
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Next define an equivalent moment of inertia and mass per unit length of the stepped
beam.

eq L

There are the numerator and denominator, respectively, of equation (3), each divided
by the full length of the tower to ensure that /,, and m,, continue to have the correct
units of a moment of inertia and a mass per unit length.

To include a top mass M)ép is a straightforward addition to the equivalent mass in the
denominator and the equation (3) hence becomes:

, =t ELL gt El, \
16t (M, +m,L) 16 (M,, +m, L)L @

top

®

Obviously equation (4) has been checked via some calculations. For a uniform beam a
division in 5 elements gave a frequency which is 5.4% higher than the exact result,
while 10 elements results in a 4.5% higher frequency. For an engineering
approximation this is in our view good enough.

Foundation influence

We want to bring the final equation including foundation influence in the same form
as the equation presented earlier in our contribution on natural periods.

Rigid body rotation of a tapered beam with a fopp mass

top

1= [m(x)-%*-ds+ M, I’
0

' with: [, =m, -L2-=_“m(x)-x2-dx

! rot rot
/ 0
gives: [= (M,Op +mmt) I
® 2 . Krol (5)
ro 2
(Mtop + mrot) L
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Translation of a tapered beam with top mass

mass = J.m(x)dx + M
0

L +_ mx) P
= Mtop + o
at
! l (A/[top + m[al)

Composite equation (ignoring shear effect)

For the total system subjected to the three springs in series we then have:

0l = total generalised stiffness of complete system
‘=

total generalised mass of complete system

As we are more interested in natural periods (note: w=2n/T), this can be easily
transformed (with bending as the governing influence):

T2 = 4 ? total generalised mass of complete system

total generalised stiffness of complete system

equivalent mass for bending

=4n? - : ————
sum of stiffnesses for springs in series

=4r? -(M

1op T Mag L) . + + (7

T =
3EI

eq

— = 8
nt KL KL | ®

rot

4n*(M,, +m, L)L 'FE*L 3EI,, 3EI,
at

Next the rotational and translational influences of the foundation can be combined:
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4n*(M,,, +m, L) 3EI
7;22 ( top q ) . ﬁ’_g__*_ eq (9)
3E[eq T KeqL
K_K, I?
rot**lat
where: g = 5
Krot + KlatL
So the final expression:
dn* (M, +m L\ T
T? = ( @ ) 18, e (10)
t 3E[ 71:4 found
eq

with:

= /=
I, = 5
2
n X .
Zm/ll.(l — COS(__jD
= 2L
meq = 7
o _3EL,
found — KeqL
— Kr'ot Klat LZ
“ K, +K, I’

rot lat

Final remark: Cp,,,, is a factor reflecting the influence of the flexibility of the

foundation. The value of Cy,,,,; may vary between 0 for very stiff foundation
behaviour and, say, 0.5 for reasonably flexible foundation behaviour.

LAH - JHV 18-10-96
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