CT4491 Fundamentals of Urban Drainage Urban drainage in lowland areas Marie-claire ten Veldhuis,

17-9-2013

Challenge the future

Source: www.nu.nl

Living in a delta: polder areas and water management challenges

Rotterdam and Jakarta: two examples of delta cities

- A. Influence of river and sea on urban water systems
- B. Small ground level variations (almost flat)
- C. High groundwater tables, salt water intrusion

Rotterdam: moderate climate, annual rainfall ca. 0.9 m/yr Jakarta: tropical climate, annual rainfall ca. 2 m/yr

Darker shades of green indicate higher population density

Source: www.deltanet-project.eu

Delft: ground level relative to sea level?

- A: +10m
- B: +5 m
- C: 0 m
- D: -5 m
- E: -10 m
- F: Other

ŤUDelft

Legenda

Actueel Hoogtebestand Nederland met reliëf-schaduwering

Schaal 1: 1.500.000

Delft: ground level relative to sea level?

0.5 to 5 meters below mean sea level (!)

Legenda

Actueel Hoogtebestand Nederland met reliëf-schaduwering

Schaal 1: 1.500.000

Deltas, if dikes do not protect

Influence of sea level

Influence of sea + river levels

Watersystems in the Dutch delta

Titel van de presentatie

Jakarta Pluit - February 2011 (Water level 2.28m)

Delft: ground level relative to sea level? 0.5 to 5 meters below mean sea level

Jakarta: average 7 m + sea level ➤ 40% of Jakarta below sea level

Deltas with protection: dikes and polders

Deltas with protection: dikes and polders

Delft area, dikes for flood protection:

Sea defence works (23 km)
River dikes (31 km)
Polder dikes (655 km)

If this were 1 continuous straight line of dikes, what European capitals could we reach?

Delft area, dikes for flood protection:

Sea defence works (23 km)
River dikes (31 km)
Polder dikes (655 km)
Total: 709km

- Delft-Paris: 463 km
- Delft-Berlin: 702 km
- Delft-London: 492 km

A lot of dikes to maintain or enlarge!

Dikes for flood protection

Delft: 0.5 to 5 meters below mean sea level 709 km of dikes to protect surrounding delta area

Jakarta: 40% or urbanised area below sea level➢ Should a similar solution be implemented here?

High sea levels are only part of the problem:

Jakarta, Jan 2013: extreme rainfall

Water management challenges in deltas Water comes from all sides:

Make a list: 7 water problems in deltas

Water management challenges in deltas

Water comes from all sides:

- ➢High sea levels (6, 7)
- ➢High river levels (5)
- Heavy rainfall (1)

> High surface water levels (in polder and regional water system) (4)

- >Urban drainage system overloading (3)
- High groundwater levels (2)

What growing challenges due to climate change for:

- ➢High sea levels (6, 7)
- ➢High river levels (5)
- Heavy rainfall (1)

> High surface water levels (in polder and regional water system) (4)

- >Urban drainage system overloading (3)
- High groundwater levels (2)

What growing challenges due to climate change for:

6

- Sea levels ?
- River levels ?
- Rainfall ?
- Surface water levels ?
- > Urban drainage ?
- Groundwater levels ?

3

5

The challenge: coping with more extreme rainfall in cities

Jakarta, Jan 2013: extreme rainfall

Aerial view of Delft and elevation levels

Dark blue is level of main surface waters (water level Schie: NAP-0.43)

Delft city centre: canals

Note: street level only cm-s above water level

Street level only cm-s above water level: susceptible to flooding

bec I VOE

me tiev ger D vor me

re ci DEL Cir gre ger WO te. ke die der mi Die op het bre ren 1 OVE det gin sta ties en uit tro laa

Deltas , an additional challenge: land subsidence

Land reclamation: subsidence

Historical development of water and ground levels in polders

Land reclamation

Scale: -20mm/yr (dark blue) to 0mm/yr (red)

Subsidence in polders

Photo credit: Foter / CC BY-SA

Jakarta: Settlement rate in mm/yr: Up to 25 cm /year

> So... we build higher and higher buildings and will be safe?

Amsterdam: Settlement rate in mm/yr: Up to 2 cm/year

TUDelft

Well, only if you do not want to go anywhere...

Water management challenges in deltas

Water comes from all sides:

- ≻High sea levels (6, 7)
- High river levels (5)
- Heavy rainfall (1)
- High surface water levels (in polder and regional water system) (4)

>Urban drainage system overloading (3)

High groundwater levels (2)

3

Sewer systems in lowland areas, where there is no natural slope

Sewers in flat urban catchments

Sewers in flat urban catchments

Side view of small-gradient sewer

IUDelft

40

Sewers in flat urban catchments

- > Small ground level gradient; small sewer pipe gradients
- Low flow velocities
- Subcritical flow

UDelft

41

Sewers in steep urban catchments

Main differences between urban water systems in sloping versus flat catchments:

Feature	Sloping	Flat

First, a few questions:

Q: What is level of sewer outflow (bottom level pipe) compared to surface water level ?

Q: What is level of sewer outflow (bottom level pipe) compared to surface water level ?

Q: How deep are sewers below ground level ?

Q: What is level of sewer outflow (bottom level pipe) compared to surface water level ?

Q: How deep are sewers below ground level ?

A: typically 1 m to 4 m below ground level

Q: What is level of sewer outflow (bottom level pipe) compared to surface water level ?

Q: How deep are sewers below ground level ?

A: typically 1 m to 4 m below ground level

Q: What is distance between ground level and surface water level?

Q: What is level of sewer outflow (bottom level pipe) compared to surface water level ?

Q: How deep are sewers below ground level ?

A: typically 1 m to 4 m below ground level

Q: What is distance between ground level and surface water level?

A: Typically 0.5 m – 2.5 m

Q: What is level of sewer outflow (bottom level pipe) compared to surface water level ? A: typically 0.3 m tot 1 m below surface water level

Q: How deep are sewers below ground level ?

A: typically 1 m to 4 m below ground level

Q: What is distance between ground level and surface water level?

A: Typically 0.5 m – 2.5 m

Main differences between urban water systems in sloping versus flat catchments:

Feature	Sloping	Flat
Distance ground level to surface water level	0 – 10s of meters Pipe outflow point above surface water level Pipes above groundwater	0 – 10s of centimeters Pipe outflow point below surface water level Pipes below groundwater
Water conveyance gradient	Natural gradient	Create gradient by digger deeper+adding pumping stations
Flow velocities	High flow velocities	Low flow velocities
Design conditions	Pipes partially filled	Pipes surcharged =pressurised flow

Example: Longitudinal profile of a combined sewer pipeline

Sketch the hydraulic gradient in the sewers during design rainfall

Rainfall intensity: 60 l/s/ha Connected surface per manhole: 4 ha; 50/50 paved/unpaved Distance between manholes: 400 m

Example: Longitudinal profile of a combined sewer pipeline

Sketch the hydraulic gradient in the sewers during design rainfall

Rainfall intensity: 60 l/s/ha Connected surface per manhole: 4 ha; 50/50 paved/unpaved Distance between manholes: 400 m

Example: Longitudinal profile of a stormwater sewer line

Same question:

Sketch the hydraulic gradient in the sewers during design rainfall

Example: Longitudinal profile of a stormwater sewer line

Same question:

Sketch the hydraulic gradient in the sewers during design rainfall

Example: Longitudinal profile of a stormwater sewer line

Same question:

Sketch the hydraulic gradient in the sewers during design rainfall

