Offshore Hydromechanics Module 1

Dr. ir. Pepijn de Jong

1. Intro, Hydrostatics and Stability

OE4630d1 Offshore Hydromechanics Module 1

- dr.ir. Pepijn de Jong
 Assistant Prof. at Ship Hydromechanics & Structures, 3mE
- Book: Offshore Hydromechanics by Journée and Massie
 - At Marysa Dunant (secretary), or download at <u>www.shipmotions.nl</u>

OE4630d1 Offshore Hydromechanics Module 1

- Communication via Blackboard
- Exam (date&place may be subject of change!)
 - Formula sheet comes with exam, however...
 - Closed book
 - Don't forget to subscribe!

Overview

	Tutorial				Lecture				Online Assignments	
Week	date	time	location	topic	date	time	location	topic	deadline	topic
2					11-Sep	8:45- 10:30	3mE-CZ B	Intro, Hydrostatics, Stability		
3					18-Sep	8:45- 10:30	DW-Room 2	Hydrostatics, Stability		
4	23-Sep	8:45- 10:30	TN- TZ4.25	Hydrostatics, Stability	25-Sep	8:45- 10:30	3mE-CZ B	Potential Flows	27-Sep	Hydrostatics, Stability
5					02-Oct	8:45- 10:30	3mE-CZ B	Potential Flows		
6	07-Oct	8:45- 10:30	TN- TZ4.25	Potential Flows	09-Oct	8:45- 10:30	3mE-CZ B	Real Flows	11-Oct	Potential Flows
7	14-Oct	8:45- 10:30	TN- TZ4.25	Real Flows	16-Oct	8:45- 10:30	3mE-CZ B	Real Flows, Waves	18-Oct	Real Flows
8					23-Oct	8:45- 10:30	3mE-CZ B	Waves	25-Oct	Waves
Exam	30-Oct	9:00- 12:00	TN- TZ4.25	Exam						

Assignments

- Online on Blackboard
 - Automatic
 - Feedback included
- 4 series with deadlines:
 - Hydrostatics & Stability
 - Potential Flow
 - Real Flows
 - Waves
- First series and details follow later this week
- Regular exercises and old exams on Blackboard

Topics of Module 1

- Problems of interest
- Hydrostatics
- Floating stability
- Constant potential flows
- Constant real flows
- Waves

Chapter 1 Chapter 2 Chapter 2 Chapter 3 Chapter 4 Chapter 5

Contents

Lecture 1

- Introduction Module 1
- Problems of interest (Chapter 1)
- Hydrostatics (Chapter 2)
- Floating stability (Chapter 2)

done next up

Learning Objectives

Chapter 1

- Describe the field of application for hydromechanics in the offshore industry
- Know the definition of ship motions

Chapter 1

Coordinate system and ship motions

Contents

Lecture 1

- Introduction Module 1
- Problems of interest (Chapter 1)
- Hydrostatics (Chapter 2)
- Floating stability (Chapter 2)

done done next up

Learning Objectives

Chapter 2

 To carry out and analyse hydrostatic and floating stability computations at a superior knowledge level, including the effect of shifting loads and fluids in partially filled tanks

Naming Conventions Ship Dimensions

Hydrostatic pressure

Hydrostatic pressure

Which one has the largest pressure on its bottom?

Hydrostatic paradox

Hydrostatic paradox

Archimedes Law and Buoyancy

- The weight of an floating body is equal to the weight of the fluid it displaces
- Displacement of a floating body:

The amount of fluid the body displaces often expressed in terms of mass or volume:

$$\Delta = \rho g \nabla$$

 Δ Weight of displacement [N]gGravity accel. $[m/s^2]$ 9.81 ρ Density $[kg/m^3]$ 1025 ∇ Volume of displacement $[m^3]$

Archimedes Law and Buoyancy

- The weight of an floating body is equal to the weight of the fluid it displaces
- Displacement of a floating body:

The amount of fluid the body displaces often expressed in terms of mass or volume:

$$\Delta = \rho g \nabla$$

Archimedes Law and Buoyancy

- Two ways of looking at buoyancy:
 - **1.** As distributed force $\Delta = \rho g \nabla$
 - 2. The result of external (hydrostatic) pressure on the interfaces

• Illustration: drill string suspended in a well with mud

Example: drill string in mud

2 Consider buoyancy result of pressures

1 Consider distributed buoyant force

2 Consider buoyancy result of pressures

2 Consider buoyancy result of pressures

Contents

Lecture 1

- Introduction Module 1
- Problems of interest (Chapter 1)
- Hydrostatics (Chapter 2)
- Floating stability (Chapter 2)

done done done next up

Definition

- All properties that floating structures exhibit when perturbed from their equilibrium state
- A 'stable' ship quickly restores its equilibrium when perturbation is removed
- Often we wish for:
 - A stable working platform, i.e. a platform that does not move too much in waves
 - Is this the same property?
- Do we always desire maximum stability?

Example

Example

Example

Equilibrium states

Equilibrium for floating structures

Center of buoyancy and center of gravity

B point about which first moment of submerged volume = 0
 G point about which first moment of mass or weight = 0

First moment of area/volume/mass/...

First moment of area/volume/mass/...

$$dA = ydx$$
$$A = \int_{x_1}^{x_2} y \, dx$$

Area:

First moment of area/volume/mass/...

Static moment:

First moment of area/volume/mass/...

Static moment:

$$dS_{y} = xydx$$
$$S_{y} = \int_{x_{1}}^{x_{2}} x ydx$$

First moment of area/volume/mass/...

Center of area

$$y_A = \frac{S_x}{A}$$

 $x_A = \frac{S_y}{A}$

Center of buoyancy and center of gravity

Stability moment

Stability moment

Metacenter height

• KB en KG straightforward

GM = KB + BM - KG

- BM more complicated:
 - Determined by shift of B sideways and up
- Three 'methods':
 - Initial stability: wall sided ship and **sideways** shift of B
 - Scribanti: wall sided ship and B shifts **sideways** and **up**
 - 'Real ship': determine GZ curve for actual shape

Shift of mass or volume center

Shift of mass or volume center

BM, BN_{$$\varphi$$} I_t
$$BB'_{\varphi} = \frac{2\int_0^L 1/3y^3 dx}{\nabla} \tan\varphi$$

$$BM = \frac{BB'_{\varphi}}{\tan\varphi} = \frac{I_t}{\nabla}$$

$$B'_{\varphi}B_{\varphi} = \frac{1}{2} \frac{2 \int_{0}^{L} \frac{1}{3} y^{3} dx}{\nabla} \tan^{2}\varphi$$

$$MN_{\varphi} = \frac{1}{2}\tan^2\varphi \frac{I_t}{\nabla}$$

Metacenter height

• For small heeling angles (<5 to 10 degrees): Initial stability

$$GM = KB + BM - KG = KB + \frac{I_t}{\nabla} - KG$$

- For slightly larger heeling angles (5 to 15 degrees): Scribanti $GM = KB + BN_{\varphi} - KG = KB + \frac{I_t}{\nabla}(1 + 1/2\tan^2\varphi) - KG$
- Exact?
- For large heeling angles (> 10 to 15 degrees)
- Need of more accurate description: GZ curve

Second moment of area: moment of inertia of area

Questions

- How do submerged bodies remain stable?
- How to increase stability?
- Why shape semi-submersibles?

Sources images

[1] Topside is skidded onto the HYSY229 launch barge, source: Dockwise Ltd.

[2] Topside, source: DTK offshore

[3] The WindFloat prototype operating 5km offshore in Portugal at a water depth of 50m, picture credit: Principle Power

[4] Pacific Ocean, (Jun 4, 1998) The attack submarine USS Columbus (SSN 762) home ported at Naval Station Pearl Harbor, Hawaii, conducts an emergency surface training exercise, 35 miles off the coast of Oahu, HI., source: U.S. Navy photo by Photographer's Mate 2nd Class David C. Duncan/Commons Wikimedia

[5] Source: A.B.S. Model (S) Pte Ltd

