Traffic Flow Theory & Simulation

S.P. Hoogendoorn

Lecture 1 Introduction

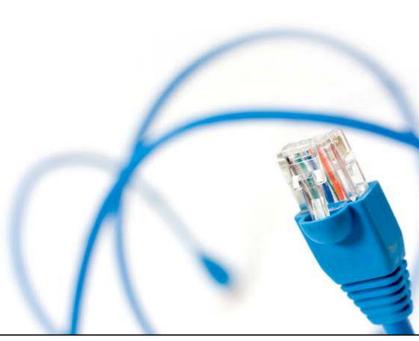
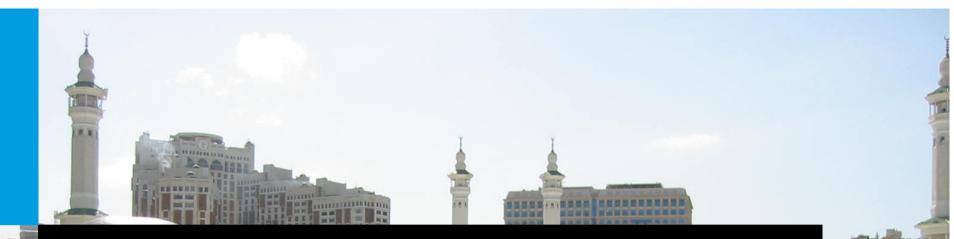


Photo by Wikipedia / CC BY SA

Course 4821 - Introduction 1 | 57

Photo by wikipedia / CC BY SA



Traffic Flow Theory & Simulation An Introduction

Prof. Dr. Serge P. Hoogendoorn, Delft University of Technology 2/4/12

Photo by wikipedia / CC BY SA

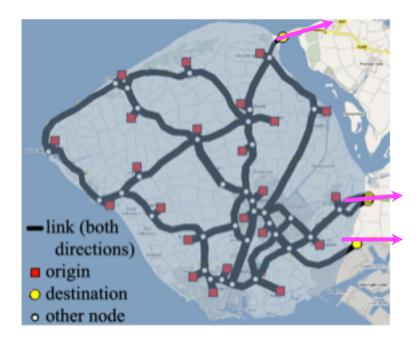
A AA

Challenge the future

Introduction

Evacuation Walcheren in case of Flooding

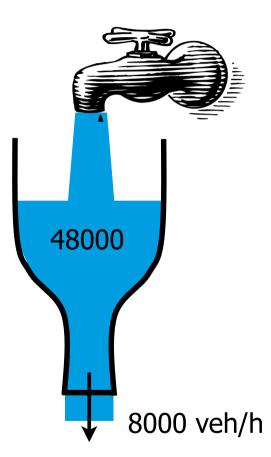
- 120.000 people to evacuate
- Evacuation time = 6 hour
- 2,5 evacuees / car
- A58: 2 lanes
- N57, N254: 1 lane
- Total available capacity?
 - Each lane about 2000 veh/h
 - Total capacity 8000 veh/h
- How to calculate evacuation time



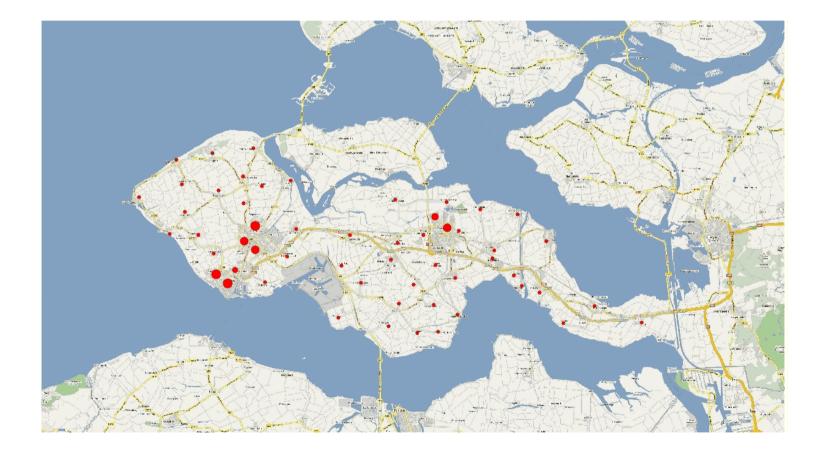
Introduction

Evacuation Walcheren in case of Flooding

- 120.000 people to evacuate
- Evacuation time = 6 hour
- 2,5 evacuees / car
- A58: 2 lanes
- N57, N254: 1 lane
- Total available capacity?
 - Each lane about 2000 veh/h
 - Total capacity 8000 veh/h
- How to calculate evacuation time



Introduction Evacuation Walcheren in case of Flooding



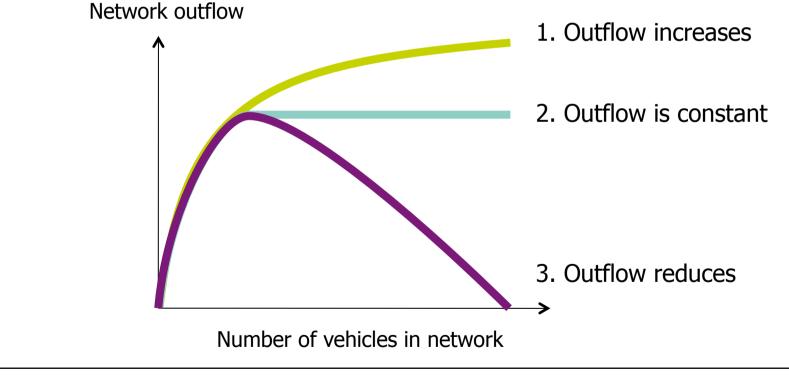
Introduction

Network load and performance degradation

- It turns out that in simulation only 41.000 people survive!
- Consider average relation between number of vehicles in network (accumulation) and performance (number of vehicles completing their trip)
- How does average performance (throughput, outflow) relate to accumulation of vehicles?
- What would you expect based on analogy with other networks?
 - Think of a water pipe system where you increase water pressure
 - What happens?

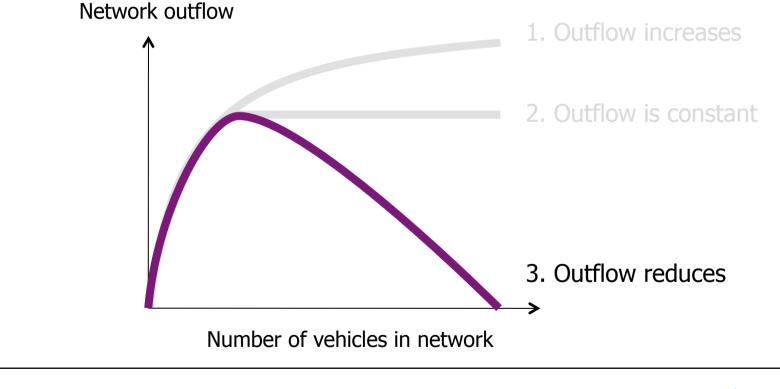
Network traffic flow fundamentals Coarse model of network dynamics

 Fundamental relation between network outflow (rate at which trip end) and accumulation

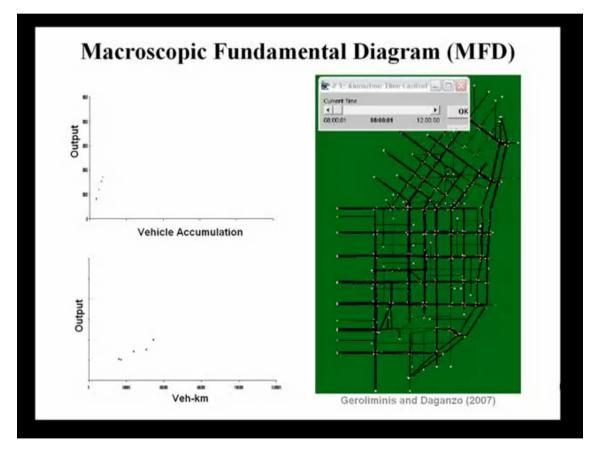


Network traffic flow fundamentals Coarse model of network dynamics

 Fundamental relation between network outflow (rate at which trip end) and accumulation



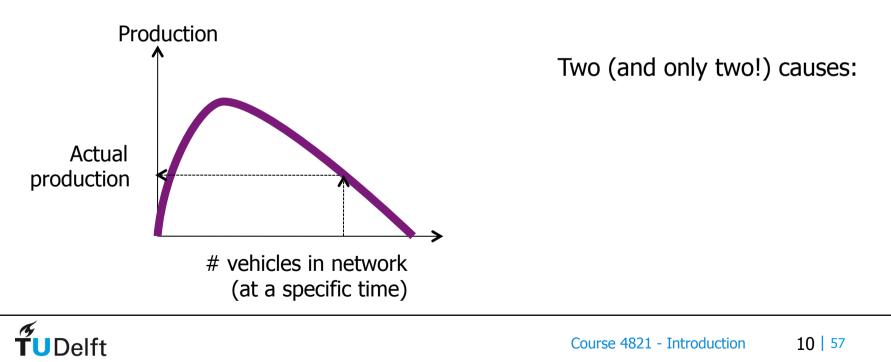
Network traffic flow fundamentals Demand and performance degradation



Network Performance Deterioration

• Important characteristic of traffic networks:

- Network production degenerates as number of vehicles surpasses the critical number of vehicles in the network
- Expressed by the Macroscopic (or Network) Fundamental Diagram



Introduction

Lecture overview

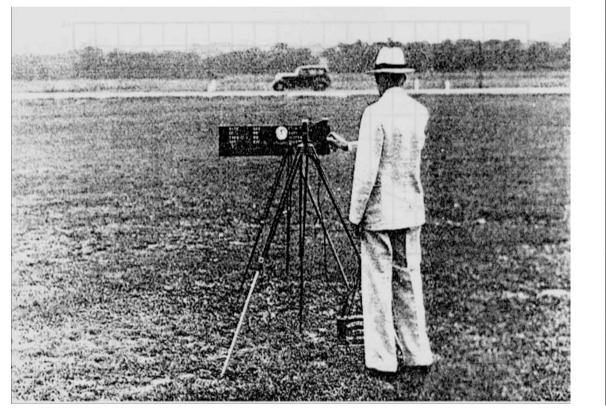
- Traffic queuing phenomena: examples and empirics
- Modeling traffic congestion in road networks
 - Model components of network models
 - Modeling principles and paradigms
 - Examples and case studies
- Model application examples
 - Traffic State Estimation and Prediction
 - Controlling congestion waves
- Microscopic and macroscopic perspectives!

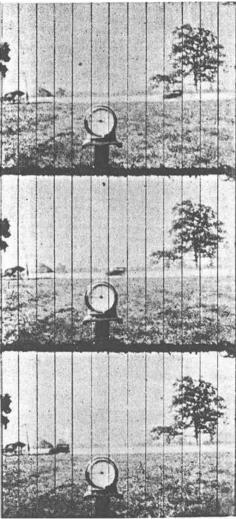
1.

Traffic Congestion Phenomena

Empirical Features of Traffic Congestion

Historical perspective Bruce Greenshields

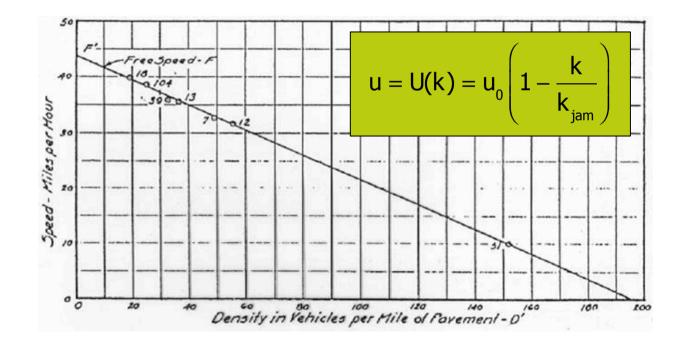




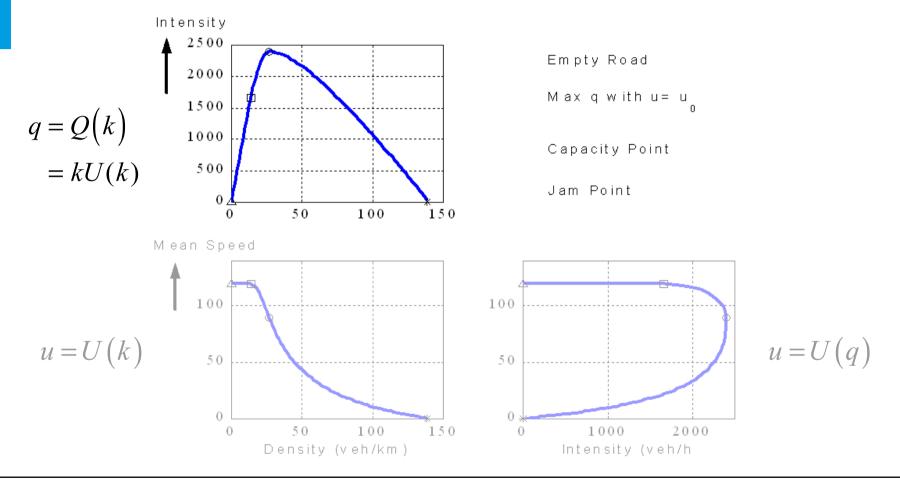
Source: Unknown

First model of traffic congestion Fundamental diagram

- Relation between traffic density and traffic speed: u = U(k)
- Underlying behavioral principles? (density = 1/average distance)



Fundamental diagrams Different representations using q = k×u

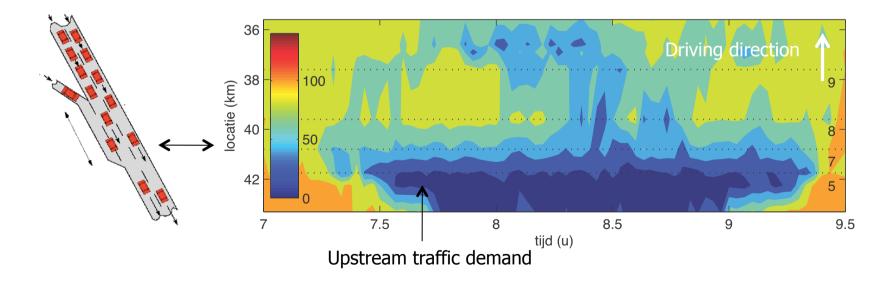


Dynamic properties

Traffic congestion at bottleneck (on-ramp)

Consider bottleneck due to on-ramp

- Resulting capacity (capacity ramp flow) is lower than demand
- Queue occurs upstream of bottleneck and moves upstream as long as upstream demand > flow in queue (shockwave theory)



Dynamic properties Shockwave theory

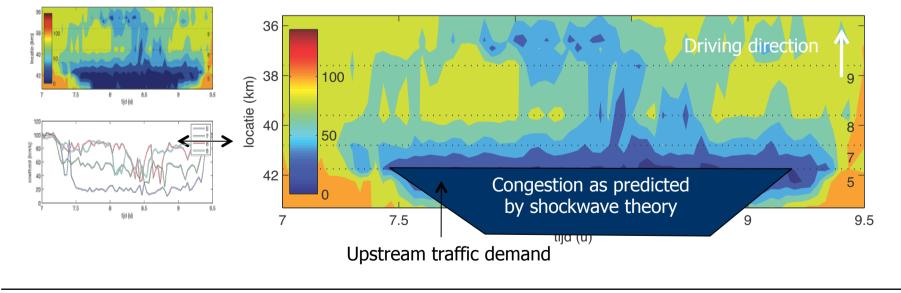
- Predicting queue dynamics (queuing models, shockwave theory)
- Predicts dynamics of congestion using FD
- Flow in queue = $C q_{on-ramp}$
- Shock speed determined by:

TUDelft

$$\omega_{12} = \frac{Q(k_2) - Q(k_1)}{k_2 - k_1}$$

 $-\,\mathbf{q}_{_{on-ramp}}$

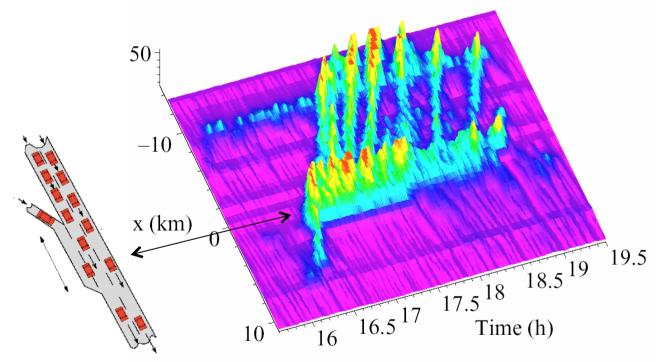
 $\mathsf{q}_{\mathsf{upstream}}$



Course 4821 - Introduction 17 | 57

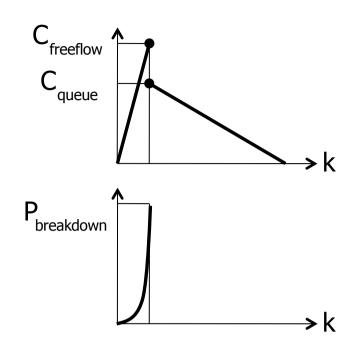
Dynamic features of road congestion Capacity funnel, instability, wide moving jams

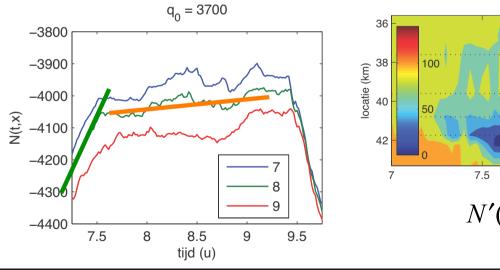
- Capacity funnel (relaxation) and capacity drop
- Self-organisation of wide moving jams

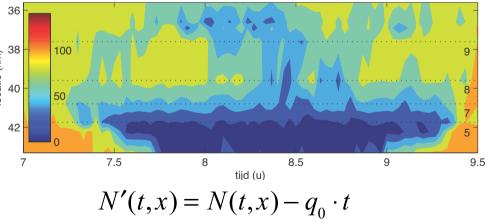


Capacity drop Two capacities

- Free flow cap > queue-discharge rate
- Use of (slanted cumulative curves) clearly reveals this
- N(t,x) = #vehicles passing x until t
- Slope = flow

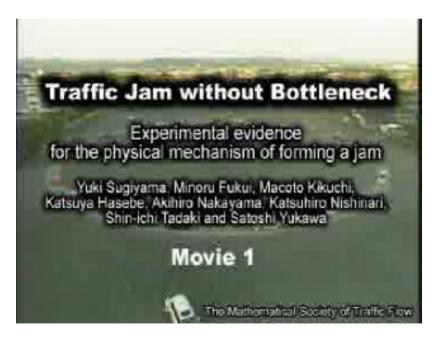






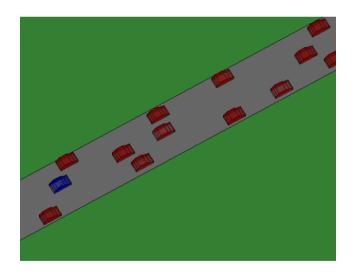
Instability and wide moving jams Emergence and dynamics of start-stop waves

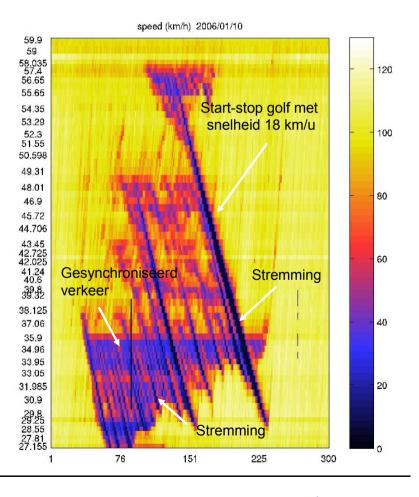
- In certain density regimes, traffic is highly unstable
- So called 'wide moving jams' (start-stop waves) self-organize frequently (1-3 minutes) in these high density regions



Instability and wide moving jams Emergence and dynamics of start-stop waves

- Wide moving jams can exist for hours and travel past bottlenecks
- Density in wide moving jam is very high (jam-density) and speed is low





Pedestrian flow congestion Start-stop waves in pedestrian flow

 Example of Jamarat bridge shows self-organized stop-go waves in pedestrian traffic flows

Photo by wikipedia / CC BY SA

Pedestrian flow congestion Start-stop waves in pedestrian flow

• Another wave example..

2.

Traffic Flow Modeling

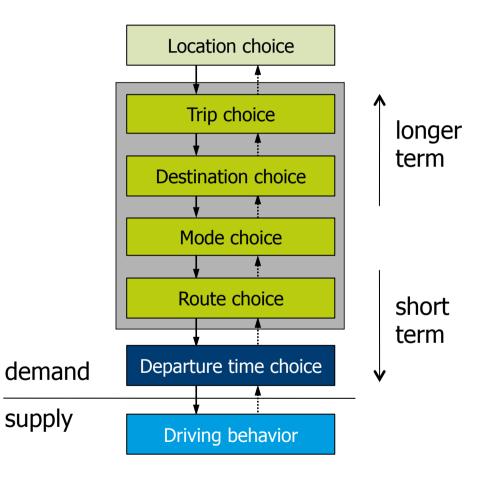
Microscopic and macroscopic approaches to describe flow dynamics

Modeling challenge Traffic theory: not an exact science!

- Traffic flow is a result of human decision making and <u>multi-actor</u> <u>interactions</u> at different behavioral levels (driving, route choice, departure time choice, etc.)
- Characteristics behavior (inter- and intra-driver heterogeneity)
 - Large diversity between driver and vehicle characteristics
 - Intra-driver diversity due to multitude of influencing factors, e.g. prevailing situation, context, external conditions, mood, emotions
- The traffic flow theory does not exist (and will probably never exist): this is not Newtonian Physics or thermodynamics
- Challenge is to develop theories and models that represent reality sufficiently accurate for the application at hand

Network Traffic Modeling Model components and processes

- Traffic conditions on the road are end result of many decisions made by the traveler at different decision making levels
- Depending on type of application different levels are in- or excluded in model
- Focus on driving behavior and flow operations



Modeling approaches Microscopic and macroscopic approaches

- Two dimensions:
 - Representation of traffic
 - Behavioral rules, flow characteristics

	Individual particles	Continuum
Individual behavior	Microscopic (simulation) models	Gas-kinetic models (Boltzmann equations)
Aggregate behavior	Newell model, particle discretization models	Queuing models Macroscopic flow models

Modeling approaches Microscopic and macroscopic approaches

Helly model:
$$\frac{d}{dt}v_i(t + T_r) = \alpha \cdot \Delta v_i(t) + \beta \cdot (s^*(v_i(t)) - s_i(t))$$

	Individual particles	Continuum
Individual behavior	Microscopic (simulation) models	Gas-kinetic models (Boltzmann equations)
Aggregate behavior	Newell model, particle discretization models	Queuing models Macroscopic flow models

Microscopic models? Ability to described many flow phenomena

Example of advanced micro-simulation model

Photo by Intechopen / CC BY

Modeling approaches Microscopic and macroscopic approaches

Bando model:
$$\frac{d}{dt}v_i(t) = \frac{V(1 / s_i(t)) - v_i(t)}{\tau}$$

	Individual particles	Continuum
Individual	Microscopic	Gas-kinetic models
behavior	(simulation) models	(Boltzmann equations)
Aggregate	Newell model, Bando	Queuing models
behavior	model	Macroscopic flow models

Modeling approaches

Microscopic and macroscopic approaches

$$\begin{cases} \frac{\partial k}{\partial t} + \frac{\partial q}{\partial x} = r - s \\ q = Q(k) \end{cases}$$

	Individual particles	Continuum
Individual behavior	Microscopic (simulation) models	Gas-kinetic models (Boltzmann equations)
Aggregate behavior	Newell model, particle discretization models	Queuing models Macroscopic flow models

Modeling approaches Microscopic and macroscopic approaches

Prigogine-Herman model:
$$\frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x} + \frac{\partial}{\partial v} \left(\rho \frac{\Omega^0(v) - v}{\tau} \right) = \left(\frac{\partial \rho}{\partial t} \right)_{INT}$$

	Individual particles	Continuum
Individual behavior	Microscopic (simulation) models	Gas-kinetic models (Boltzmann equations)
Aggregate behavior	Newell model, particle discretization models	Queuing models Macroscopic flow models

3.

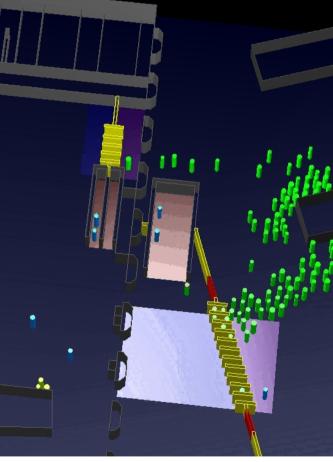
Example applications of theory and models

Application of models Different models, different applications

- Ex-ante studies: systematic comparison of alternatives during different phases of the design process
 - Road- and network design
 - Traffic Control / Management Strategies and Algorithms
 - Impact of traffic information
 - Evacuation planning
 - Impact of Driver Support Systems
- Training and decision support for decision makers
- Traffic state estimation and data fusion
- Traffic state prediction
- Model predictive control to optimize network utilization

Application of models Examples

- NOMAD model has been extensively calibrated and validated
- NOMAD reproduces characteristics of pedestrian flow (fundamental diagram, self-organization)
- Applications of model:
 - Assessing LOS transfer stations
 - Testing safety in case of emergency conditions (evacuations)
 - Testing alternative designs and Decision Support Tool
 - Hajj strategies and design



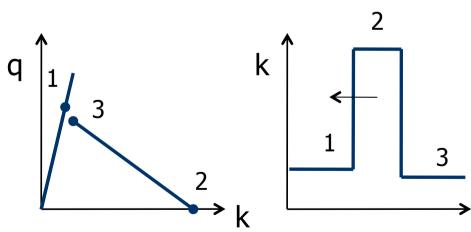
NOMAD Animatie by verkeerskunde.nl

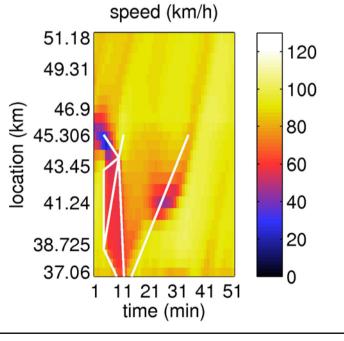
Traffic State Estimation & Prediction Applications of Kalman filters

Photo by fileradar.nl

Dynamic speed limits Using Traffic Flow Theory to improve traffic flow

- Algorithm 'Specialist' to suppress start-stop waves on A12
- Approach is based on reduced flow (capacity drop) downstream of wave
- Reduce inflow sufficiently by speedlimits upstream of wave





TUDelft

Х

4.

Course scope and overview

Scope of course CT4821

- Operational characteristics of traffic, so *not*:
 - Activity choice and scheduling
 - Route choice and destination choice
 - Departure time or (preferred) arrival time choice
- Traffic flow theory does not exclude any transportation mode!
- Primary focus in this course will be of road traffic (cars) with occasion side-step to other modes (pedestrian flows)
- Distinction between
 - Macroscopic and microscopic (and something in the middle)
 - Flow variables, (descriptive) flow characteristics and analytical tools (mathematical modelling and simulation)

Overview of flow variables (chapter 2)

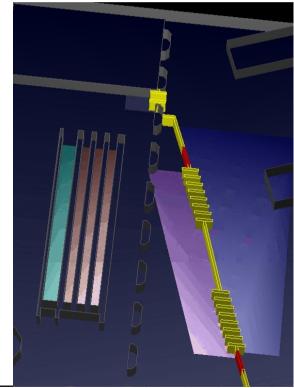
	Microscopic variables (individual vehicles)	Macroscopic variables (traffic flows)	
Local	Time headway	Flow / volume / intensity Local mean speed	
Instantaneous	Distance headway	Density Space mean speed	
Generalized	<u>Trajectory</u> Path speed	Mean path speed Mean travel time	

Flow characteristics

- Microscopic characteristics (chapter 3)
 - Arrival processes
 - Headway models / headway distribution models
 - Critical gap distributions
- Macroscopic characteristics (chapters 4 and 5)
 - Fundamental diagram
 - Shockwaves and non-equilibrium flow properties

Analytical tools

- Use fundamental knowledge for mathematical / numerical analysis
- Examples *macroscopic* tools
 - Capacity analysis (chapter 6)
 - Deterministic and stochastic queuing models (chapter 7)
 - Shockwave analysis (chapter 8)
 - Macroscopic flow models (chapter 9)
 - Macroscopic simulation models (13 and 15)
- Examples *microscopic* tools
 - Car-following models (chapter 11)
 - Gap-acceptance models (chapter 12)
 - Traffic simulation (chapter 13 and 14)



Course ct4821

• Lectures by Serge Hoogendoorn and Victor Knoop:

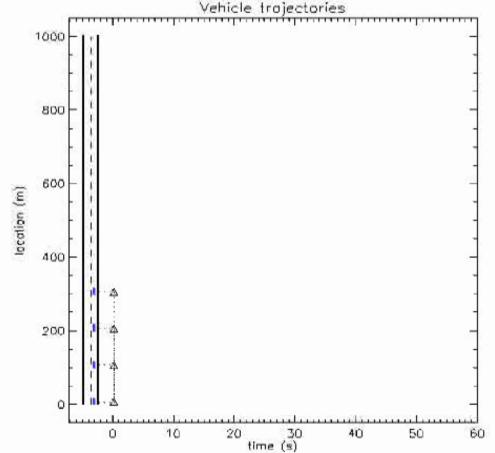
- Monday 8:45 10:30
- Tuesday 8:45 10:30
- Mandatory assignment (Hoogendoorn, Knoop + PhD's):
 - Wednesday 13:45 17:30 (starting in week 1)
 - New Data analysis and FOSIM practicum (week 1-7)
 - Reports on assignment
 - Description assignment posted on blackboard beginning of next week
- Course material:
 - Parts of the reader (blackboard)
 - Assignments (blackboard)

5.

Traffic Flow Variables

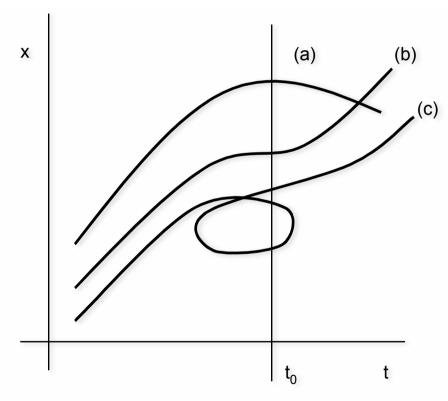
Vehicle trajectories

- Positions x_i(t) along roadway of vehicle i at time t
- All microscopic and macroscopic characteristics can be determined from trajectories!
- In reality, trajectory information is rarely available
- Nevertheless, trajectories are the most important unit of analysis is traffic flow theory



Vehicle trajectories (2)

• Which are trajectories?

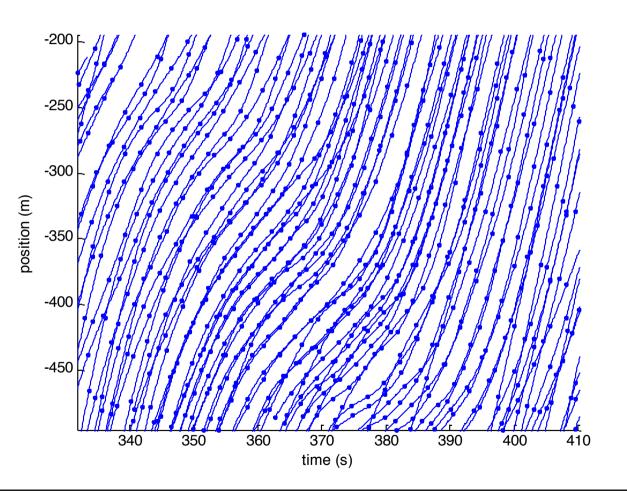


Empirical vehicle trajectories

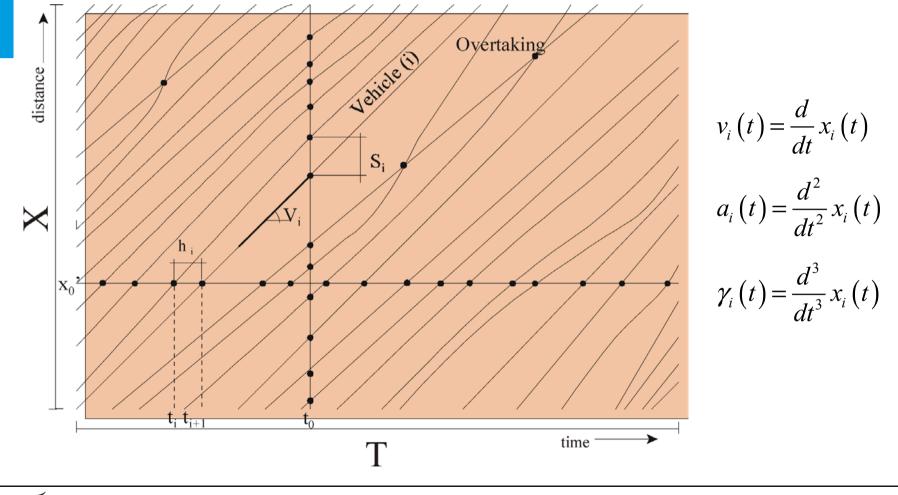
Vehicle

trajectories determined using remote sensing data (from helicopter) at site Everdingen near Utrecht

- Dots show vehicle position per 2.5 s
- Unique dataset



Understanding trajectories

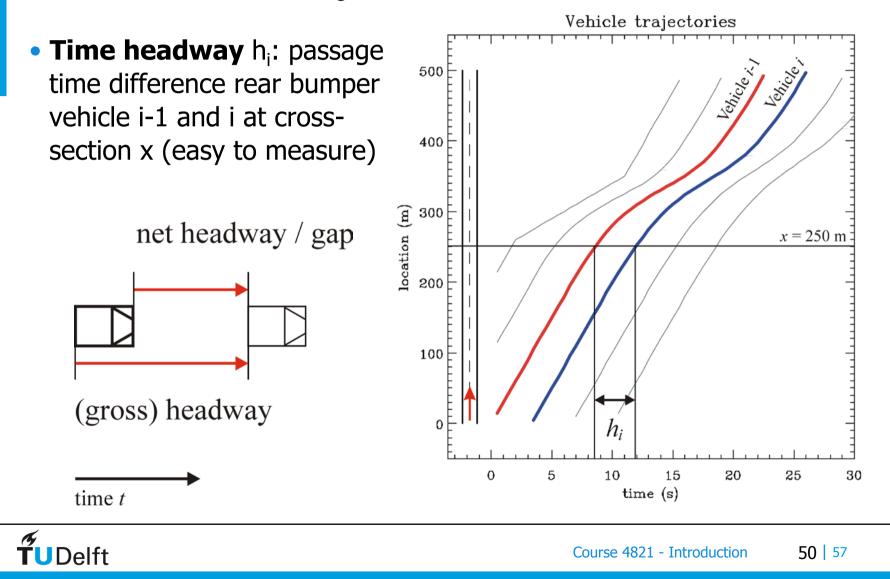


TUDelft

Applications of multiple trajectories

- Exercise with trajectories by drawing a number of them for different situations
 - Acceleration, deceleration,
 - Period of constant speed,
 - Stopped vehicles
 - Etc.
- See syllabus and exercises for *problem solving using trajectories*:
 - Tandem problem
 - Cargo ship problem
- Also in reader: discussion on vehicle kinematics described acceleration a_i(t) as a function of the different forces acting upon the vehicle

Time headways

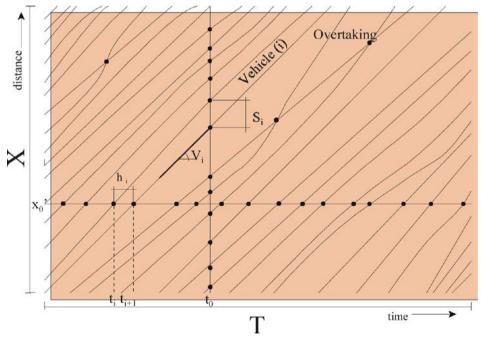


Time headways (3)

- Headways are local variables (collected at cross-section x₀)
- Mean headway for certain period T of the n vehicles that have passed x_0

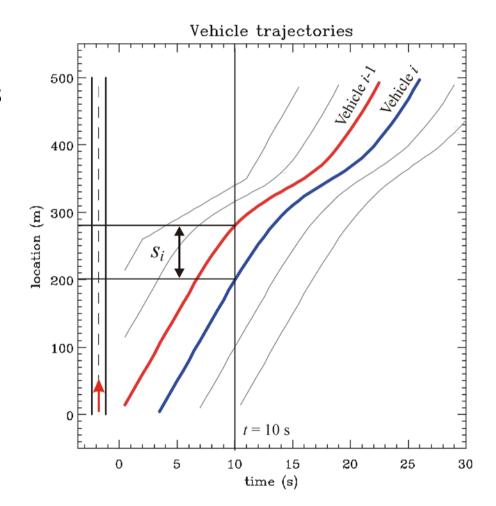
$$\overline{h} = \frac{1}{n} \sum_{i=1}^{n} h_i = \frac{T}{n}$$

 Exercise: express the mean headway for the cross-section as a function of the mean headways H₁ and H₂ per lane



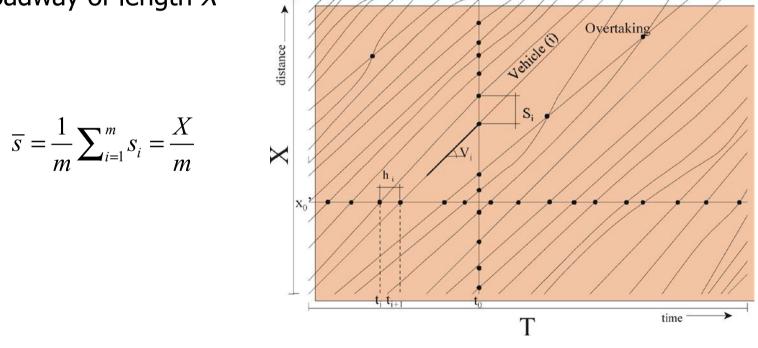
Distance headways

- Distance headway s_i: difference between positions vehicle i-1 and i at time t (difficult to measure!)
- Gross distance headway and net distance headway

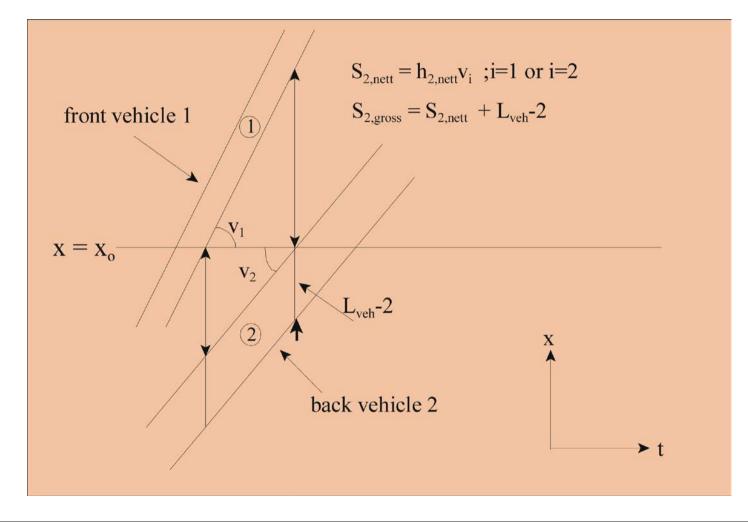


Distance headways (2)

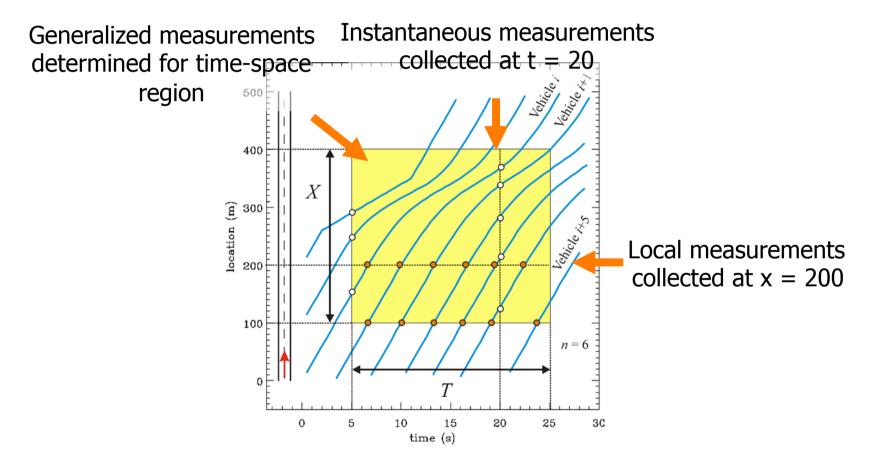
- Distance headway: *instantaneous microscopic variable*
- Space-mean distance headway of *m* vehicles at time instant *t* for roadway of length X



Distance headways (3)



Local, instantaneous and generalized



TUDelft

Course 4821 - Introduction 55 | 57

Macroscopic flow variables

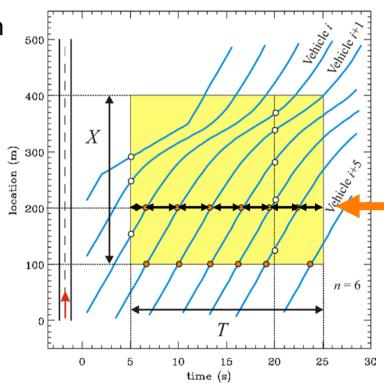
• Traffic intensity q (local variable)

- Vehicle number passing cross-section x₀ per unit time (hour, 15 min, 5 min)
- If n vehicles pass during T, q is defined by:

$$q = \frac{n}{T} = \frac{n}{\sum_{i=1}^{n} h_i} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} h_i} = \frac{1}{\frac{1}{\overline{h}}}$$

- Referred to as flow, volume (US)
- How can flow be measured?

TUDelft



Macroscopic flow variables (2)

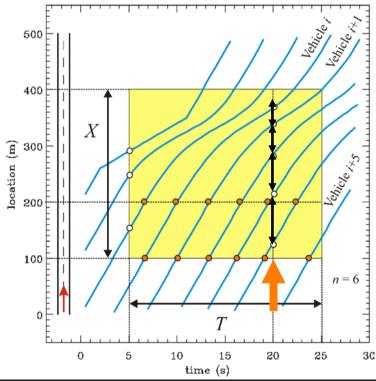
- **Traffic density k** (instantaneous variable)
 - Vehicle number present per unit roadway length (1 km, 1 m) at instant t
 - If m vehicles present on X, k is defined by

$$k = \frac{m}{X} = \frac{m}{\sum_{i=1}^{m} s_i} = \frac{1}{\frac{1}{m} \sum_{i=1}^{m} s_i} = \frac{1}{\frac{1}{m} \sum_{i=1}^{m} s_i} = \frac{1}{\overline{s}}$$

- Also referred to as concentration
- How can density be measured?

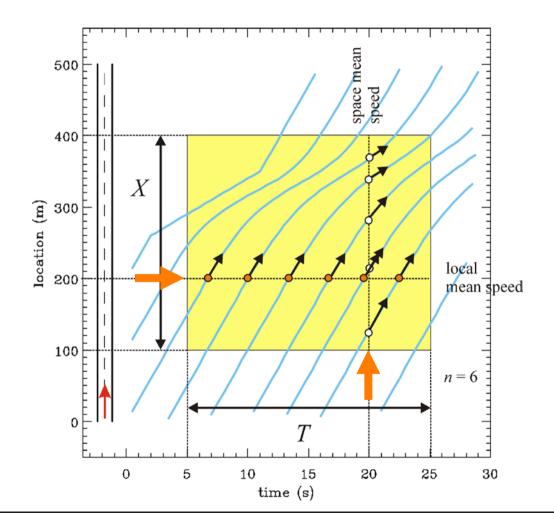
• Now how about speeds?

TUDelft



Course 4821 - Introduction 57 | 57

Mean speeds



Mean speeds

UDelft

Local mean speed / time mean speed (see next slide)

• speeds v_i of vehicles passing a cross-section x during period T

$$u_L = \frac{1}{n} \sum_{i=1}^n v_i$$

- Instantaneous / space mean speed (next slide)
 - speed v_i of vehicles present at road section at given moment t

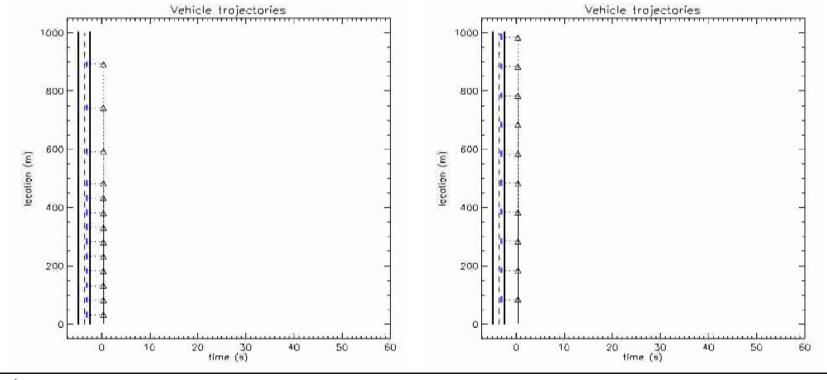
$$u_M = \frac{1}{m} \sum_{j=1}^m v_j$$

• We can show that *under special circumstances* we can compute space-mean speeds from local measurements

$$u_{M} = \left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{v_{i}}\right)^{-1}$$
 (harmonic average local speeds)

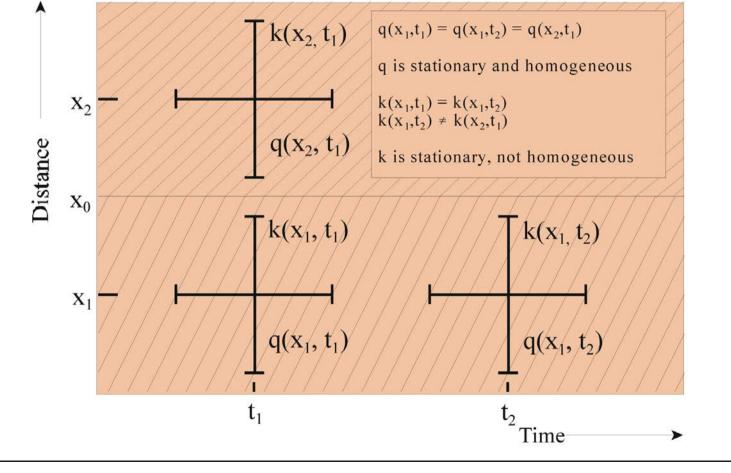
Homogeneous & stationary variables

- Consider any variable z(t,x); z is:
 - **Stationary** if z(t,x) = z(x)
 - Homogeneous if z(t,x) = z(t)



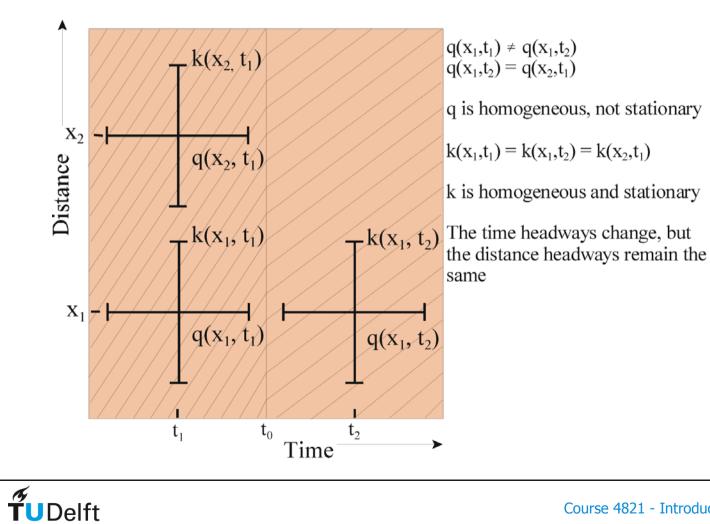
″ T∪Delft

Stationary flow conditions



TUDelft

Homogeneous flow conditions

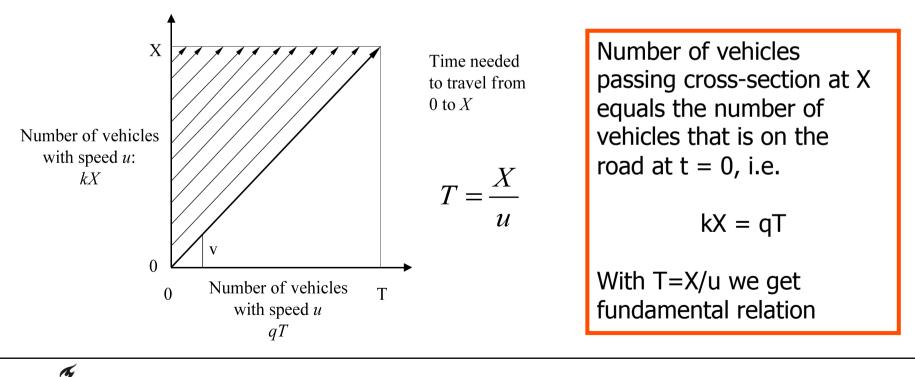


62 57 Course 4821 - Introduction

Fundamental relation

ŤUDelft

- Consider traffic flow that is in stationary and homogeneous
- Then the so-called fundamental relation holds q = ku
- Assume intensity q, density k and that all drive with speed u



Course 4821 - Introduction 63 | 57

Which speed to use in $q = k \times u$?

- Can we apply the fundamental relation q = ku for an heterogeneous driver population?
- Yes -> the trick is to divided the traffic stream into homogeneous groups j of drivers moving at the same speed u_i
- Now, what can we say about the speed that we need to use?

Which speed to use in $q = k \times u$?

- Can we apply the fundamental relation q = ku for an heterogeneous driver population?
- For one group j (vehicles having equals speeds) we have $q_j = k_j u_j$
- The total flow q simply equals $q = \sum q_i = \sum k_i u_i$
- For the total density we have $k = \sum k_i$
- Let u = q/k, then

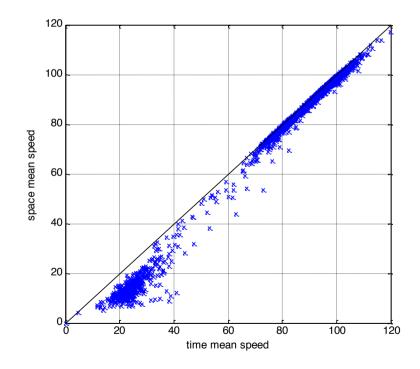
$$u = \frac{\sum k_j u_j}{\sum k_j} = u_M \quad \left(= \frac{\sum (q_j / u_j) u_j}{\sum q_j / u_j} = \frac{\sum q_j}{\sum q_j / u_j} \right)$$

• If we consider $q_j = 1$, then... $u = \frac{\sum 1}{\sum 1 / u_j} = u_M$

 In sum: the fundamental relation q = ku_M may only be used for space-mean speeds (harmonic mean of individual vehicle speeds)!!!

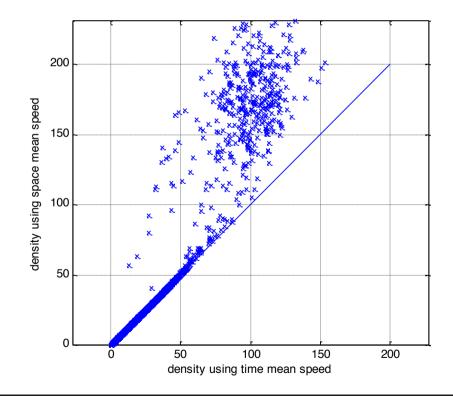
Difference arithmetic & space mean

• Example motorway data time-mean speed and space-mean speed



What about the derived densities?

• Suppose we derive densities by k = q/u...



Conclusion average speeds...

- Care has to be taken when using the fundamental relation q = ku_M that the correct average speed is used
- Correct speed is to be used, but is not always available from data!
- Dutch monitoring system collects average speeds, but which?
- Same applies to UK and other European countries (except France)
- Exercise:
 - Try to calculate what using the wrong mean speeds means for travel time computations

Generalized definitions of flow (Edie)

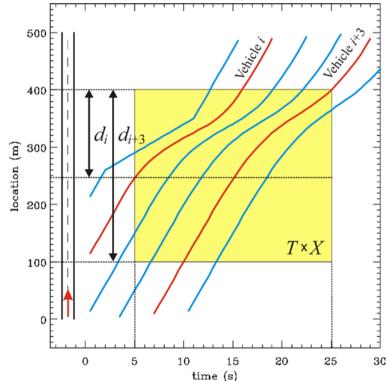
- Generalized definition flow, mean speed, and density in timespace plane
- Consider rectangle $T \times X$
- Each vehicle i travels distance d_i
- Define performance $P = \sum_{i} d_{i}$
- P defines 'total distance traveled'
- Define generalized flow

$$q \coloneqq \frac{P}{XT} = \frac{\sum d_i / X}{T}$$

• Let X < 1, then d_i \leq X

$$q = \frac{nX}{XT} = \frac{n}{T}$$

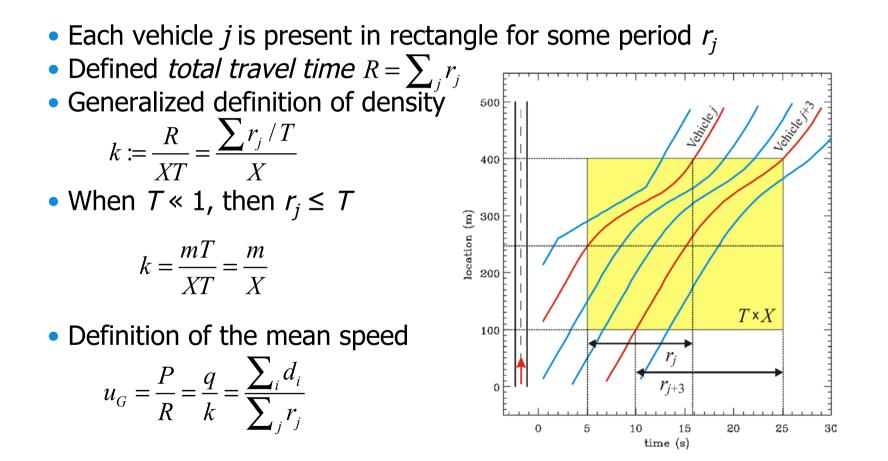
TUDelft



Course 4821 - Introduction 69 | 57

Generalized definition (Edie)

TUDelft



Course 4821 - Introduction

70 57

Overview of variables

	Local measurements	Instantaneous measurements	Generalized definition (Edie)
Variable	Cross-section x Period T	Section <i>X</i> Time instant <i>t</i>	Section X Period T
Flow q (veh/h)	$q = \frac{n}{T} = \frac{1}{\overline{h}}$	q = ku	$q = \frac{\sum_{i} d_{i}}{XT}$
Density <i>k</i> (veh/km)	$k = \frac{q}{u}$	$k = \frac{n}{X} = \frac{1}{\overline{s}}$	$k = \frac{\sum_{j} r_{j}}{XT}$
Mean speed <i>u</i> (km/h)	$u_L = \frac{n}{\sum_i (1/v_i)}$	$u = \frac{\sum_{j} v_{j}}{n}$	$u = \frac{q}{k}$

TUDelft

Furthermore...

• Homework:

- Read through preface and chapter 1
- Study remainder of chapter 2 (in particular: moving observer, and observation methods)

