Mechatronic system design Mechatronic system design wb2414-2013/2014 Course part 1 # Introduction Prof.ir. R.H.Munnig Schmidt Mechatronic System Design WB2414-Mechatronic System Design 2013-2014 I # Contents - Personal Introduction Teacher - Structure of the course - Positioning; What is Mechatronic System Design? TUDelft University of Technology WB2414-Mechatronic System Design 2013-2014 # Introduction Rob Munnig Schmidt It all started with audio, amplifiers and loudspeakers WB2414-Mechatronic System Design 2013-2014 # Contents - Personal Introduction Teachers and assistant staff - Structure of the course - What is Mechatronic System Design WB2414-Mechatronic System Design 2013-2014 9 # Learning goals. The student: Can select and calculate a single axis functional electromagnetic actuator for a given specification, working according to the Lorentz or reluctance force generation principle. WB2414-Mechatronic System Design 2013-2014 # Learning goals. The student: • Can select a suitable circuit and calculate component values for a single channel stable power amplifier intended for a given electromagnetic actuator. $\frac{R_1}{V_{cs}} = I_{o}R_3$ WB2414-Mechatronic System Design 2013-2014 11 # Learning goals. The student: Can apply optimal PID motion controller settings for a given plant, consisting of a dynamically realistic power amplifier, electromagnetic actuator and mechanical structure with an ideal sensor, to achieve a maximum bandwidth or disturbance rejection. WB2414-Mechatronic System Design 2013-2014 13 # Learning goals. The student: - Can select and calculate a single axis functional electromagnetic actuator for a given specification, working according to the Lorentz or reluctance force generation principle. - Can select a suitable circuit and calculate component values for a single channel stable power amplifier intended for a given electromagnetic actuator. - Can analyse and derive improvements to the dynamic behaviour of an actuator driven mechanical structure with maximum 6th order plant dynamics (incl actuator and amplifier) by means of Bode and Nyquist plots. - Can identify and apply optimal PID motion controller settings for a given plant, consisting of a dynamically realistic power amplifier, electromagnetic actuator and mechanical structure with an ideal sensor, to achieve a maximum bandwidth or disturbance rejection. TUDelft Delft University of Technology WB2414-Mechatronic System Design 2013-2014 # Examination test matrix (toetsmatrijs) | LG/Level | Knowledge | Insight | Application | Analysis | Evaluation | Creation | Total | |------------------|-----------|---------|-------------|----------|------------|----------|-------| | Actuator design | | 10 | 10 | | | | 20 | | Power amplifier | | 10 | 10 | | | | 20 | | Dynamic analysis | | | | 20 | 10 | | 30 | | PID
tuning | | 15 | 15 | | | | 30 | | Total | | 35 | 35 | 20 | 10 | | 100 | TUDelft University of Technology WB2414-Mechatronic System Design 2013-2014 15 # Typical aspects of this course - Continuous matching of physical and mathematical models with practice. Translate a real system into a dynamic model and vice-versa. Get a gut-feel for the right answer before calculating with MATLAB like tools. - Understand what a position control system really behaves like. - The use of approximating (scalar) calculations is often sufficient for making important concept design decisions. - Math is great but only after sufficient understanding of the relevant physics phenomena is obtained. TUDelft University of Technology WB2414-Mechatronic System Design 2013-2014 # The book is used in three interconnected lectures - ME1611-10 Physics for Mechanical Engineers. (Chapter 7, Optics) - WB2414-09 Mechatronic System Design. (Chapter 2-6) - WB2303-10 Electronics & Measurement. (Chapter 7,8) - Used at external professional courses and inside hightech companies as reference book. - Cost €30 for the present edition. New edition (€tbd) will come in January when old stock is gone. (No fee for authors on sales to students!, official price €135,-) - Only the book is allowed to be used with the written examination! WB2414-Mechatronic System Design 2013-2014 17 # Assignments - Goal is to gain experience on the subject by exercising. - 4 assignments total, one for each study goal. - Each assignment is targeted 6 hours of work - Assignment published on blackboard - Answers presented in separate lecture (see program) - Only PME students following the special Physics, Mechatronics and Measurement course will receive grades. WB2414-Mechatronic System Design 2013-2014 # Program MSD (1) | Week | Date | Time
(min) | Topic | Teaching
Method | |------|-----------------|---------------|---|--------------------| | | | | Term 2 | × . | | 2.1 | Wed
13 NOV | 45+45 | Introduction Mechatronics | Lecture | | 2.2 | Wed
20 NOV | 45+45 | Electromechanic actuators I | Lecture | | 2.2 | Thurs
21 NOV | 45+45 | Assignment discussion
Optics (PME) | Class discussion | | 2.3 | Wed
27 NOV | 45+45 | Electromechanic actuators II | Lecture | | 2.4 | Wed
04 DEC | 45+45 | Dynamics of Motion Systems I | Lecture | | 2.4 | Thu
05 DEC | 45+45 | Assignment Discussion
Magnetism+Electromechanic
actuators (PME+MSD) | Class discussion | | 2.5 | Wed
11 DEC | 45+45 | Dynamics of Motion Systems II | Lecture | | 2.6 | Wed
18 DEC | 45+45 | Motion Control I | Lecture | | 2.6 | Thu
19 DEC | 45+45 | Assignment discussion Dynamics | Class discussion | ### No lectures in January! WB2414-Mechatronic System Design 2013-2014 19 # Program MSD (2) | | | | Term 3 | | | |-------------------|---------------|-------|--|------------------|--| | 3.1 Wed
12 FEB | | 45+45 | Motion Control II | Lecture | | | 3.1 | Wed
19 FEB | 45+45 | Motion Control III | Lecture | | | 3.3 | Wed
26 FEB | 45+45 | Power Electronics I | Lecture | | | 3.3 | Thu
27 FEB | 45+45 | Assignment discussion
Motion control | Class discussion | | | 3.4 | Wed
05 FEB | 45+45 | Power Electronics II | Lecture | | | 3.5 | Wed
12 FEB | 45+45 | Power Electronics III | Lecture | | | 3.5 | Thu
13FEB | 45+45 | Assignment discussion
Low power electronics (MIE) | Class discussion | | | 3.6 | Wed
20 MAR | 45+45 | Dynamic System Control
Examples I | Lecture | | | 3.7 | Wed
26 MAR | 45+45 | Dynamic System Control
Examples II | Lecture | | | 3.7 | Thu
27 MAR | 45+45 | Assignment discussion
Power Electronics | Class discussion | | TUDelft University of Technology WB2414-Mechatronic System Design 2013-2014 ## Contents - Personal Introduction Teachers and assistant staff - Way of Working - Structure of the course - What is Mechatronic System Design? WB2414-Mechatronic System Design 2013-2014 21 # Mechatronic System Design is about: Precision Controlled Positioning systems. - Controlled by model-based feedforward and feedback. - Mastering disturbances that determine the precision. - Noise - Vibrations - Applied on a real hardware device. - Where reliable physical and mathematical models are used to determine predictable behaviour. WB2414-Mechatronic System Design 2013-2014