# Traffic Flow Theory & Simulation

S.P. Hoogendoorn

Lecture 12 Pedestrian Flow Theory





#### Pedestrian Flow Theory An Introduction

2/5/2011, Prof. Dr. Serge Hoogendoorn, Delft University of Technology





Challenge the Future

Photo by Andre Ludtke on Flickr.com / CC BY NC SA

# State-of-the-art Pedestrian Research



Pedestrian Flow Theory and Simulation

2

• Key differences between car traffic and pedestrian traffic?



• Key differences between car traffic and pedestrian traffic?



• Key differences between car traffic and pedestrian traffic?





Pedestrian Flow Theory and Simulation

3

• Key differences between car traffic and pedestrian traffic?





• Key differences between car traffic and pedestrian traffic?

| Aspect Cars Pedestrians |
|-------------------------|
|-------------------------|



Pedestrian Flow Theory and Simulation

• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars | Pedestrians |
|----------------|------|-------------|
| Dimensionality |      |             |



Pedestrian Flow Theory and Simulation

• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars                      | Pedestrians |
|----------------|---------------------------|-------------|
| Dimensionality | Movement in one dimension |             |



• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars                      | Pedestrians                |
|----------------|---------------------------|----------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions |



Pedestrian Flow Theory and Simulation

| Aspect         | Cars                      | Pedestrians                |
|----------------|---------------------------|----------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions |
| Direction      |                           |                            |



• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars                      | Pedestrians                |
|----------------|---------------------------|----------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions |
| Direction      | Single direction flow     |                            |



Pedestrian Flow Theory and Simulation

| Aspect         | Cars                      | Pedestrians                |
|----------------|---------------------------|----------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions |
| Direction      | Single direction flow     | Multiple directional flow  |



| Aspect         | Cars                      | Pedestrians                |
|----------------|---------------------------|----------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions |
| Direction      | Single direction flow     | Multiple directional flow  |
| Contact        |                           |                            |



• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars                      | Pedestrians                |
|----------------|---------------------------|----------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions |
| Direction      | Single direction flow     | Multiple directional flow  |
| Contact        | No physical contact       |                            |



• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars                      | Pedestrians                      |
|----------------|---------------------------|----------------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions       |
| Direction      | Single direction flow     | Multiple directional flow        |
| Contact        | No physical contact       | Physical contact drives dynamics |



• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars                      | Pedestrians                      |
|----------------|---------------------------|----------------------------------|
| Dimensionality | Movement in one dimension | Movement in two dimensions       |
| Direction      | Single direction flow     | Multiple directional flow        |
| Contact        | No physical contact       | Physical contact drives dynamics |
| Interaction    |                           |                                  |



| Aspect         | Cars                               | Pedestrians                      |
|----------------|------------------------------------|----------------------------------|
| Dimensionality | Movement in one dimension          | Movement in two dimensions       |
| Direction      | Single direction flow              | Multiple directional flow        |
| Contact        | No physical contact                | Physical contact drives dynamics |
| Interaction    | Rules strongly affect interactions |                                  |



| Aspect         | Cars                               | Pedestrians                      |
|----------------|------------------------------------|----------------------------------|
| Dimensionality | Movement in one dimension          | Movement in two dimensions       |
| Direction      | Single direction flow              | Multiple directional flow        |
| Contact        | No physical contact                | Physical contact drives dynamics |
| Interaction    | Rules strongly affect interactions | Subconscious drives behavior     |



| Aspect         | Cars                               | Pedestrians                      |
|----------------|------------------------------------|----------------------------------|
| Dimensionality | Movement in one dimension          | Movement in two dimensions       |
| Direction      | Single direction flow              | Multiple directional flow        |
| Contact        | No physical contact                | Physical contact drives dynamics |
| Interaction    | Rules strongly affect interactions | Subconscious drives behavior     |
| Anisotropy     |                                    |                                  |



| Aspect         | Cars                               | Pedestrians                      |
|----------------|------------------------------------|----------------------------------|
| Dimensionality | Movement in one dimension          | Movement in two dimensions       |
| Direction      | Single direction flow              | Multiple directional flow        |
| Contact        | No physical contact                | Physical contact drives dynamics |
| Interaction    | Rules strongly affect interactions | Subconscious drives behavior     |
| Anisotropy     | Strongly anisotropic               |                                  |



• Key differences between car traffic and pedestrian traffic?

| Aspect         | Cars                               | Pedestrians                      |
|----------------|------------------------------------|----------------------------------|
| Dimensionality | Movement in one dimension          | Movement in two dimensions       |
| Direction      | Single direction flow              | Multiple directional flow        |
| Contact        | No physical contact                | Physical contact drives dynamics |
| Interaction    | Rules strongly affect interactions | Subconscious drives behavior     |
| Anisotropy     | Strongly anisotropic               | Mildly anisotropic               |



# Aim of this lecture

- Revisit concepts introduced for car traffic and discuss applicability (required modifications) for pedestrian flow
- After lecture you should be able to:
  - Understand key differences between pedestrian and vehicular flow
  - Understand / apply concepts of flow, density, speed to ped flows
  - Interpret and use pedestrian fundamental diagrams
  - Apply shockwave theory to simple situations
  - Know key self-organized features in pedestrian flow
  - Understand key features of microscopic pedestrian models and interpret equations



# 0.

#### Pedestrian data collection

Some approaches...

# Issues in pedestrian data collection

- Many traditional observation techniques are not suitable for pedestrian flow observation (inductive loops, pneumatic tubes)
- Which techniques would be suitable?
- Which issues do you still see?



# Examples of ped data collection



Source Unknown



Pedestrian Flow Theory and Simulation

7

# Examples of ped data collection

- Use of video detection + tracking software
- Relatively easy for controlled experiments
- More comprehensive for field tests (e.g. Lowlands)





Pedestrian Flow Theory and Simulation

# Pedestrian tracking software

- Major problems due to occlusion, shape deformation, etc.
- Fusion of different data sources (multiple cameras, different types of cameras) seems appropriate direction (e.g. <u>http://</u> <u>www.youtube.com/watch?v=otYOKYrZ6r4&feature=related</u>)
- New data collection techniques (UAV's) will allow for more data on pedestrian behavior in the field



# 1.

#### Pedestrian Flow Variables

...flows, densities, speeds...

# Microscopic flow variables



- Pedestrian trajectories  $\vec{x}(t)$ describe position of a pedestrians as a function of t
- Example taken from TUD pedestrian experiments
- Projection of 2D movement onto main direction of motion yields regular trajectories in which overtakings / passings etc can be identified



Delft

# Microscopic flow variables

• Passing maneuver in xt-plane





## Interpret the following projections



# Microscopic flow variables

• How to define the following microscopic characteristics?

- Speed (or velocity) of a pedestrian
- Acceleration of a pedestrian
- Time headway
- Distance headway
- Can all of them be defined in a sensible way under all circumstances / in all situations?



# Macroscopic flow variables

- Density is an instantaneous variable describing number of pedestrians in an area per unit area (P/m2)
- Which 'cut' to take?
- What are reasonable ranges for the density?
- Lets do a small experiment...





# Macroscopic flow variables

- Density is an instantaneous variable describing number of pedestrians in an area per unit area (P/m2)
- Which 'cut' to take?
- What are reasonable ranges for the density?
- Lets do a small experiment...




# Use of Fundamental Diagram

Service levels identification





Pedestrian Flow Theory and Simulation

16

# Macroscopic flow variables

• How can **flow** be defined?



# Macroscopic flow variables

• How can **flow** be defined?

- Flow can be defined in relation to a crosssection (a line in two-dimensional space)
- Examples:
  - Flow in x-direction measured at crosssection at certain y
  - Flow in y-direction measured at crosssection at certain x
- Same definition as as for car traffic (# passages / time interval)





Delft

# Macroscopic flow variables

• Flow at a location (x,y) thus has direction

$$\vec{q} = \begin{pmatrix} q_x \\ q_y \end{pmatrix} = q \cdot \vec{e}$$

- Questions:
  - How to interpret  $q_x$  and  $q_y$ ?
  - Can flows be negative?
  - Does q = ku apply?
  - So, what about the speeds?
- What about two-dimensional or crossing flows?

Delft

#### Short note on directions...

- Pedestrian flows are multi-directional
- Per direction: flows, speeds, and densities can be determined sensibly according to the previous definitions
- Aggregation <u>over directions</u> is not trivial!
- Example:
  - Consider bi-directional flow with d = 1 (right to left), 2 (left to right)
  - We have determined flows for both direction
  - How can we determine the gross flow?

$$\vec{q} = \sum_{d=1,2} \vec{q}_d$$
? or  $\vec{q} = \sum_{d=1,2} |\vec{q}_d|$ ? or ???



#### Micro-macro relation: exercise

- For car traffic, there is a strong relation between (average) micro and macro flow characteristics
- Do these relations also hold for pedestrian flows?
- How does s = 1/k (average distance headway = 1 over density) translate to a pedestrian flows?
- What about h = 1/q (average time headway = 1 over flow)?



# 2.

#### Pedestrian Flow Characteristics

Capacity and Fundamental Diagram

#### Fundamental diagram of Weidmann

• Relation between (absolute) speed / flow and density

• How to interpret the maximum flow (1.22 P/m/s)?





#### Behavioral interpretation of FD?

• Car fundamental diagram has a 'clear' microscopic interpretation:

• The larger the speed, the more distance drivers maintain with respect to each other, e.g.:

$$\frac{1}{k} = s(v) = s_0 + T \cdot v$$

• What about the pedestrian fundamental diagram?



#### Behavioral interpretation of FD?

• Car fundamental diagram has a 'clear' microscopic interpretation:

• The larger the speed, the more distance drivers maintain with respect to each other, e.g.:

$$\frac{1}{k} = s(v) = s_0 + T \cdot v$$

- What about the pedestrian fundamental diagram?
- Let A be the average area needed by a pedestrian walking at speed v, then:

$$\frac{1}{k} = A(v) = A_0 + T \cdot v$$

Delft

### Impact of direction on capacity

• Effect of directional composition on capacity is small (<16%)



**T**UDelft

Pedestrian Flow Theory and Simulation

• Which other factors will influence the fundamental diagram and its parameters (capacity, jam-density, etc.)?



• Which other factors will influence the fundamental diagram and its parameters (capacity, jam-density, etc.)?



- Which other factors will influence the fundamental diagram and its parameters (capacity, jam-density, etc.)?
- Flow composition
  - Age, gender,
  - Walking purpose (e.g. leisure, commuting, shopping)



- Which other factors will influence the fundamental diagram and its parameters (capacity, jam-density, etc.)?
- Flow composition
  - Age, gender,
  - Walking purpose (e.g. leisure, commuting, shopping)
- Walking infrastructure
  - Surface inclination
  - Stairs



• Which other factors will influence the fundamental diagram and its parameters (capacity, jam-density, etc.)?

#### Flow composition

- Age, gender,
- Walking purpose (e.g. leisure, commuting, shopping)
- Walking infrastructure
  - Surface inclination
  - Stairs
- Environment
  - Temperature, weather conditions



### Example: impact of gender and age



**TU**Delft

Pedestrian Flow Theory and Simulation

26

# Example: capacity analysis

- Investigate door capacity values for building regulations
- Performed controlled experiments to investigate impact of flow composition, ambient conditions, width of opening, presence of door, time pressure, etc
- Capacity relation determined:



$$C = 2.69 + 1.06 \cdot P_{C} - 0.21 \cdot P_{E} - 2.13 \cdot P_{D}$$
  
-0.01 \cdot Stress - 0.12 \cdot Width - 0.18 \cdot Door + 0.09 \cdot Light

**TU**Delft

Pedestrian Flow Theory and Simulation

# Fundamental diagram Hajj

• Measured flow-density relation at Jamarat bridge



Source : Unknown





Pedestrian Flow Theory and Simulation

#### Pedestrian crowds

• Existence of new 'turbulent' traffic state:

- Dynamics of flow are governed by physical interactions
- Density is extremely high (8-10 P/m2)
- Pedestrians move uncontrolled in multiple directions
- Pressure on pedestrians can be very high, situation is very dangerous



Photo by James Cridland on Flickr.com / CC BY



# Network fundamental diagram?



NOMAD Animatiion by verkeerskunde.nl

Behavior of ped flows in networksRelation between production and accumulation



**TU**Delft

# 3.

#### Macroscopic Flow Models

...shockwave and kinematic wave theory...

### Overloaded narrow bottleneck

Consider a narrow bottleneck situation (similar to experiments)



- Daganzo FD with C = 1 P/m/s,  $v^0 = 1$  m/s and  $k_{jam} = 5$  P/m<sup>2</sup>
- Assume homogeneous distribution of density over width of area



Delft

32

### Overloaded narrow bottleneck

- Assume following demand profile
- What happens when bottleneck is oversaturated?
- Sketch some pedestrian trajectories
- Can you also plot there yposition as a function of time?





### Conservation of pedestrians

- Derivation of conservation equation is equivalent to one dimensional car flow
- Conservation of pedestrian equation (possibly per direction d):

$$\frac{\partial k}{\partial t} + \frac{\partial \vec{q}}{\partial x} + \frac{\partial \vec{q}}{\partial y} = 0$$

• First-order pedestrian theory: pedestrians behave according to the fundamental diagram, i.e.:

$$q = Q(k) = k \cdot U(k)$$

• Is this a complete model?

Delft

# Including direction

- Additional assumption: direction at (x,y) determined by minimizing distance / walking time to destination
- Example shows iso-walking time curves to location 'x'
- Direction perpendicular to these lines (steepest descent path)
- For all math lovers:

$$\vec{e}(x,y) = \frac{\nabla D(x,y)}{\|\nabla D(x,y)\|}$$



Delft

# Completing the KW model for peds

• Information about the walking direction completes the pedestrian Kinematic Wave model:

$$\frac{\partial k}{\partial t} + \frac{\partial \vec{q}}{\partial x} + \frac{\partial \vec{q}}{\partial y} = 0 \quad \text{with} \quad \vec{q} = Q(k) \cdot \vec{e}(x, y)$$

- Additional PDE describing the optimal direction
- Basis for DTA model describing optimal direction as a continuous function of time and space (Hughes, 2004), (Hoogendoorn, 2004)



# Example application





Pedestrian Flow Theory and Simulation

37

# 4.

### Empirical features of pedestrian flow

...self-organized features

### Capacity for bidirectional flows...

- Would you expect the capacity reduction to be so small?
- Lets discuss an explanation...



• What can we observe in our experiment?





Pedestrian Flow Theory and Simulation

39

# Self-organization in pedestrian flow

• Specific traffic states appear to self-organize in pedestrian flow

• Example: self-organization of lanes in bi-directional flows



**T**UDelft

Pedestrian Flow Theory and Simulation

#### Lane formation process

- Number of lanes formed depends on density
- Example shows probably of n-lanes being formed for different density regimes
- What happens at very high densities?





# Efficiency of self-organized patterns

• Speed-density relation for different # lanes

• Small reduction in average speed visible for larger lane number





# Efficiency of self-organized patterns

• Fundamental diagrams for uni-directional and bi-directional flows

• Which is which?



**T**UDelft

Pedestrian Flow Theory and Simulation

#### Crossing flows: diagonal stripes







Pedestrian Flow Theory and Simulation

44

### End to efficient self-organization

- When density becomes too large, self-organization stagnates
- Phase transition occurs from efficient free flow to congested flow



Photo by Henk-Jand van der Klis on Flickr.com / CC BY NC ND



Pedestrian Flow Theory and Simulation

45
#### Faster is slower effect

- Increasing (time-) pressure causes severe reduction in capacity due to arc formation
- Keep density below critical density to keep flow running smoothly





Pedestrian Flow Theory and Simulation

#### Faster is slower effect

- Increasing (time-) pressure causes severe reduction in capacity due to arc formation
- Keep density below critical density to keep flow running smoothly





Source: Unknown



Pedestrian Flow Theory and Simulation

46

# Preventing the capacity drop

- Main cause of capacity drop for pedestrians is arc formation due to high pressure
- How to reduce this effect?



# Preventing the capacity drop

- Main cause of capacity drop for pedestrians is arc formation due to high pressure
- How to reduce this effect?



# 5.

## Microscopic Simulation Models

...Social Forces and other models

 Suppose we want to develop a model describing the acceleration as a continuous function of time, i.e.

$$\vec{a}_i(t) = \vec{f}(\ldots)$$



 Suppose we want to develop a model describing the acceleration as a continuous function of time, i.e.

$$\vec{a}_i(t) = \vec{f}(\ldots)$$

• Which aspects need to be included in the model?



 Suppose we want to develop a model describing the acceleration as a continuous function of time, i.e.

$$\vec{a}_i(t) = \vec{f}(\ldots)$$

- Which aspects need to be included in the model?
- How can these be specified mathematically?



 Suppose we want to develop a model describing the acceleration as a continuous function of time, i.e.

$$\vec{a}_i(t) = \vec{f}(\ldots)$$

- Which aspects need to be included in the model?
- How can these be specified mathematically?



 Suppose we want to develop a model describing the acceleration as a continuous function of time, i.e.

$$\vec{a}_i(t) = \vec{f}(\ldots)$$

- Which aspects need to be included in the model?
- How can these be specified mathematically?
- Considered aspects in Social Forces model:
  - Pedestrians aim to walk at free speed into their desired direction
  - Pedestrians try to maintain sufficient distance from the pedestrian in front of them



### Basic social forces model

• Acceleration can be written as following function:

$$\vec{a}_{i}(t) = \frac{\vec{v}^{0} - \vec{v}_{i}(t)}{\tau} + A_{0} \sum_{j \text{ in front of } i} \frac{\vec{x}_{j} - \vec{x}_{i}}{\|\vec{x}_{j} - \vec{x}_{i}\|} e^{-\frac{\|\vec{x}_{j} - \vec{x}_{i}\|}{R_{0}}}$$

- Interpret the two main terms
- Desired properties of the model?
  - What will happen when differences between desired speed and actual speed becomes larger?
  - What will happen when the distance between two pedestrians becomes very small?



## Model validity





Pedestrian Flow Theory and Simulation

51

• What is missing in the model?



52

• What is missing in the model?



52

- What is missing in the model?
- Inclusion of physical interactions



- What is missing in the model?
- Inclusion of physical interactions



- What is missing in the model?
- Inclusion of physical interactions
- Pedestrians are described like `squash balls'
  - They are compressible!
  - When compressed, strong forces are exerted in normal direction
  - Strong frictional forces apply in case of speed differentials



- What is missing in the model?
- Inclusion of physical interactions
- Pedestrians are described like `squash balls'
  - They are compressible!
  - When compressed, strong forces are exerted in normal direction
  - Strong frictional forces apply in case of speed differentials



- What is missing in the model?
- Inclusion of physical interactions
- Pedestrians are described like `squash balls'
  - They are compressible!
  - When compressed, strong forces are exerted in normal direction
  - Strong frictional forces apply in case of speed differentials
- Inclusion of physical forces results in 'faster-is-slower' effect (Nature paper of Helbing)



#### Evacuation from a room

- Results from evacuation simulation experiment using social forces model show impact of arc formation of evacuation times
- Note: free speed = proxy for haste



**T**UDelft

Pedestrian Flow Theory and Simulation

53

## Alternative microscopic models

- NOMAD model based on pedestrian economicus (Hoogendoorn)
- Models based on discrete choice approach (Bierlaire)
- Cellular Automata models (Mahmassani)





## Aim of this lecture

• After lecture you should be able to:

- Understand key differences between pedestrian and vehicular flow
- Understand / apply concepts of flow, density, speed to ped flows
- Interpret and use pedestrian fundamental diagrams
- Apply shockwave theory to simple situations
- Know key self-organized features in pedestrian flow
- Understand key features of microscopic pedestrian models and interpret equations
- Interested in pedestrian flow? Check <u>http://</u> <u>www.uitzendinggemist.nl/afleveringen/1114481/afleveringen?</u> <u>page=9</u>

