1.3

Ideal Rocket Theory (part 1)

Why an "ideal" rocket theory?

- Our objective is to find **simplified equations** for :
- The jet velocity v_e
- The mass flow rate
- m
- The **exit pressure** p_e
- This can be achieved with the Ideal Flow Theory, consisting of :
- A simplified **rocket geometry**
- A set of **physical assumptions**

Ideal Rocket Theory assumptions

- 1. The propellant is a **perfect gas**
- 2. The propellant is a calorically ideal gas
- 3. Propellant has constant homogeneous chemical composition
- 4. Nozzle flow is steady (not dependant on time)
- 5. Nozzle flow is **isentropic** (no energy is provided or lost)
- 6. Nozzle flow is **1-dimensional** (quantities vary only along axis)
- 7. Flow velocity is **purely axial**
- 8. The propellant experiences no external forces in the nozzle
- 9. Propellant in the chamber has negligible velocity ($v_c \approx 0$)

Ideal Rocket Theory building blocks

Cor		Conservation Equations		Ideal Gas Equations	
	Mass	$\rho \cdot v \cdot A = \dot{m} = \text{constant}$		$p = \rho \frac{R_A}{M_W} T$	$\frac{p}{\rho^{\gamma}} = \text{constant}$
	Momentum	$p + \frac{1}{2}\rho v^2 = \text{constant}$		$h = c_p \cdot T$	$c_p = \frac{\gamma}{\gamma - 1} \cdot \frac{R_A}{M_W}$
	Energy	$h + \frac{1}{2}v^2 = \text{constant}$		$M = \frac{v}{a}$	$a^{2} = \gamma \cdot \frac{R_{A}}{M_{W}} \cdot T = \gamma \cdot \frac{p}{\rho}$
ρ = density [kg/m ³] h = enthalpy [m ² /s ²]				γ = specific heat ratio [-]	
v = velocity [m/s]		T = temperature [K]			M _w = molecular mass [kg/kr
A = nozzle area [m ²] R_A = universal gas cons			stan	t = 8314 J/(K*kmol)	a = speed of sound [m/s]
$p = \text{pressure [Pa]}$ $c_p = \text{constant pressure}$			spe	ecific heat [J/K*kg]	<i>M</i> = Mach number [-]

Two more assumptions...

- 1. Propellant conditions in the chamber (T_c, p_c) are known
- 2. Propellant composition and characteristics ($, c_p, M_W$, constant through the nozzle) are known

Why a convergent-divergent nozzle?

- **Convergent** $(dA < 0) \rightarrow dv > 0$ <u>only if</u> M < 1 (subsonic flow)
- Divergent $(dA > 0) \rightarrow dv > 0$ only if M > 1 (supersonic flow)

Why a convergent-divergent nozzle?

To accelerate the flow **everywhere** in the nozzle (*dv* > 0):

- **Subsonic** convergent (*M* < 1), **supersonic** divergent (*M* > 1)
- Sonic throat (*M* = 1)

Jet velocity

$$v_{e} = \sqrt{\frac{2\gamma}{\gamma - 1} \cdot \frac{R_{A}}{M_{W}} \cdot T_{C}} \cdot \left[1 - \left(\frac{p_{e}}{p_{C}}\right)^{\frac{\gamma - 1}{\gamma}}\right]$$

- High jet velocity is obtained with:
 - ✓ High chamber temperature T_c

✓ Low molecular mass M_W

 \checkmark Low pressure ratio p_e / p_c

Mass flow rate

- $\Gamma(\gamma)$ = Vandenkerckhove function
- High mass flow rate is obtained with:
 - ✓ Low chamber temperature T_c
 - ✓ High molecular mass M_w
 - ✓ High chamber pressure p_c
 - High throat area A*
- For given T_c, p_c, γ, M_w, A*, <u>only one</u> mass flow rate makes sonic throat conditions possible (chocked flow)

- For given γ, nozzle geometry (expansion ratio ε) and
 pressure ratio p_e / p_c are directly related
- Implicit equation for p_e / p_c as a function of ε

- Weak dependence on γ
- High $\varepsilon \rightarrow$ high $p_c / p_e \rightarrow$ lower p_e for a given p_c
- For given expansion ratio and chamber pressure, the exit pressure p_e is <u>fixed</u>

Nozzle expansion conditions

- Three cases are possible:
 - 1) $p_e < p_a \rightarrow \text{over-expanded nozzle}$
 - 2) $p_e = p_a \rightarrow adapted nozzle$
 - 3) $p_e > p_a \rightarrow$ under-expanded nozzle
- In cases (1) and (3), pressure adjusts to ambient conditions through shock waves outside the nozzle
- For a given nozzle geometry, thrust is maximum when nozzle is adapted