

CIE4801 Transportation and spatial modelling Modal split

Rob van Nes, Transport & Planning 31-08-18

Content

• Nested logit part 2

- Modelling component 3: Modal split
 - Your comments/questions on Chapter 6
 - Practical issues

1.

Comments/questions last lecture

Comments/questions

Trip distribution

- Trip distribution models
 - Growth factor
 - Gravity model and Entropy model
 - Choice modelling
- Iterative algorithm
 - Singly, doubly and triply constrained
- Calibration methods
 - Hyman, Poisson

Estimation of the distribution function

Hyman's method

Given:

- Cost matrix
- Production and atraction
- Mean trip length

Assumed:

Type of distribution function

Estimated:

Q_i, *X_j* and parameter distribution function

Poisson model

Given:

- Cost matrix
- (partial) observed OD-matrix

Thus also known:

- (partial) production and attraction
- Totals per "bin" for the travel costs

Estimated: Q_{i} , X_{j} and F_{k}

Solution methods: overview

Hyman's method

- 1. Set parameter α of the distribution function equal to 1/MTL
- **2.** Determine values for $f(c_{ii})$
- Balance the matrix for the productions and attractions (i.e. apply gravity model)
- 4. Determine new estimate for α based on observed MTL and computed MTL and go to step 2 until convergence is achieved

Poisson model

- 1. Set values for F_k equal to 1
- 2. Balance the (partial) matrix for the (partial) production
- 3. Balance the (partial) matrix for the (partial) attraction
- 4. Balance the (partial) matrix for the totals per cost class (i.e. correction in iteration *i* for estimate of *F_k*)
- 5. Go to step 2 until convergence is achieved

$$F_k^i = \prod_j \frac{observed \ total_k}{computed \ total_k^j}$$

Practical issues

- Distribution function and trip length distribution
- Intra-zonal trips
- External zones: through traffic
- All trips or single mode?

2.

Nested logit part 2

Recall the example

$$P_{i} = \frac{e^{\beta V_{i}}}{\sum_{j} e^{\beta V_{j}}} \longrightarrow P(i) = P(i \mid k)P(k) = \frac{e^{\lambda_{k} V_{i|k}}}{\sum_{j \in k} e^{\lambda_{k} V_{j|k}}} \cdot \frac{e^{\beta V_{k}}}{\sum_{l \in K} e^{\beta V_{l}}}$$

Decomposition in two logits

Split utility in two parts:

- variables describing attributes for nests (aggregate level): W_k
- variables describing attributes within nest: Y_i

$$U_i = W_k + Y_i + \varepsilon_i \quad i \in B_k$$

Probability alternative is product of probability of alternative within nest and probability of nest

$$P_i = P_{i|B_k} P_{B_k}$$

Decomposition in two logits **Resulting formulas**

 $P_{B_k} = \frac{e^{\beta \cdot (W_k + I_k)}}{\sum_{l=1}^{K} e^{\beta \cdot (W_l + I_l)}}$ Probability of choosing a nest $P_{i|B_k} = rac{e^{\lambda_k \cdot Y_i}}{\sum_{j \in B_k} e^{\lambda_k \cdot Y_j}}$ $I_{k} = \frac{1}{\lambda_{k}} \ln \sum_{j \in B_{k}}^{N} e^{\lambda_{k} \cdot Y_{j}}$ Utility of a nest

Probability of an alternative within a nest

Main concept is $I_k \ge \max(Y_i)$, thus having alternatives can have benefits

Example route choice with 2 routes

Travel time route 1 is 40 minutes, travel time route 2 varies

Why is there an added value?

Typical conditions for nested logit

- If $\mu_k = 1$ this expression collapses to the standard logit model
- If $\mu_k \rightarrow 0$, the nest is reduced to the alternative having the highest utility, i.e. the other alternatives in the nest have no additional value

Example for P+R facility

See spreadsheet on Blackboard

Analyse the spreadsheet and experiment with the values of β and λ

Other examples of nested models

- Logsum over routes in mode choice
- Logsum over modes in destination choice
- Dutch National Model considers nesting when modelling destination and mode choice (and tour generation)

Nested logit: to conclude

- Nested logit modelling proved to be a powerful tool for travel behaviour modelling
- Limitations: an alternative can only be allocated to a specific nest
- Possible extensions:
 - Cross-nested logit
 - Generalised nested logit
 - Network GEV (Generalised Extreme Value)

3.

Mode choice: what's it about?

Introduction to modal split

20

Modal split (Netherlands) Trips and trip kilometres for an average day

Walk

Bicycle

- Car driver
- Car passenger
- Bus
- Tram/metro
- Train
- Other

Topics to study sections 6.1-6.5

- What does this modelling component do? What's its output and what's its input? How does it fit in the framework?
- Do you agree with the influencing factors?
 - For the trip maker, trip, and transport service
- Do you understand the modelling methods?
 - Empirical curves
 - Entropy based simultaneous distribution/modal split model
 - For a method to solve it, see these slides!
 - Choice model approach
 - Nested logit model
- Are these models appropriate?

3.1.1

Modal split models Method 1: Empirical curves

Travel time ratio (VF)

- Ratio between travel time by public transport and by car: $VF = \frac{t^{PT}}{t^{car}}$
- Data used: observed trips where PT might be attractive
 - i.e. train service or 'express' service available
 - Public transport: Access and egress time to main PT mode, waiting time first stop, in-vehicle time of main PT mode, waiting time transfer
 - Car: travel time based on fixed speeds per area and period of day, parking
- Basic version: $P_{pt} = e^{-0.45 \cdot VF^2} + 0.02$
- Elaborate model: $P_{pt} = e^{-0.36 \cdot VF^2 0.17 \cdot N_t \frac{1.35}{F} + 0.23} + 0.03$ N_t =transfers, F=frequency

Travel time ratio (basic version)

3.1.2

Modal split models Method 2: Simultaneous distributionmodal split

Gravity model and distribution functions

• Using distribution functions per mode

$$T_{ij} = \rho Q_i X_j F_{ij}$$
 with $F_{ij} = \sum_{\nu} f_{\nu}(c_{ij\nu}) = \sum_{\nu} F_{ij\nu}$

Note that this formula also holds per mode

27

Distribution functions per mode

Example mode choice

Function values

Result

- Car: 30 min
- PT: 50 min
- Bike: 45 min

- Car: 1.12
 PT: 0.43
- Bike: 0.04

- PT: 27%
- Bike: 2%

Doubly constrained simultaneous distribution/modal split model

$T_{ijv} = a_i b_j P_i A_j F_{ijv}$ with $F_{ijv} = f_v(c_{ijv})$								
$\sum \sum T_{ijv} = P_i$ and $\sum \sum T_{ijv} = A_j$								
	j v zone 1		zone 2		zone 3		Σ	
	car	PT	car	PT	car	PT		
zone 1		• •••						
Can be solved in a similar way as the standard doubly constrained model								
zone 3		• •••	:			••••		
Σ				-				

Simultaneous distribution/modal split model

Most of the time, destination choice and mode choice are made *simultaneously* instead of *sequentially*.

Combined choices (e.g. for going shopping):

- Take the train to the center of Amsterdam
- Take the bike to the center of Delft
- Take the car to the center of Rotterdam

General gravity model for simultaneous

trip distribution/modal split:

$$T_{ij} = \rho Q_i X_j F_{ij}$$
 with $F_{ij} = \sum_{v} f(c_{ijv})$

Does simultaneous imply that you cannot compute it sequentially?

3.1.3

Modal split models Method 3: Choice modelling

Mode choice model

$$P_{ijv} = \frac{e^{\beta V_{ijv}}}{\sum_{w} e^{\beta V_{ijw}}}$$

$$V_{ijv} = \theta_0^v + \theta_1^v X_{ij1}^v + \theta_2^v X_{ij2}^v + \theta_3^v X_{ij3}^v$$

Mode choice model

Derivation nested distribution-modal split model

Derivation nested distribution-modal split model

Difference simultaneous distribution model and nested logit model?

- Assume exponential deterrence functions: $F_v(c_{ijv}) = e^{\beta c_{ijv}}$
- For trip distribution you use: $F_{ij} = \sum F_v(c_{ijv}) = \sum e^{\beta c_{ijv}}$
- For nested logit you use:

$$F_{ij} = \sum_{v} F_{v} (C_{ijv}) = \sum_{v} e^{-\beta - c_{ijv}}$$
$$F_{ij} = F_{d} \left(\frac{-1}{\beta} \ln \left(\sum_{v} e^{\beta - c_{ijv}} \right) \right)$$

• With F_d being an exponential function as well:

$$F_{ij} = F_d \left(\frac{-1}{\beta} \ln \left(\sum_{\nu} e^{\beta - c_{ij\nu}} \right) \right) = e^{\beta_d - \frac{-1}{\beta} \ln \left(\sum_{\nu} e^{\beta - c_{ij\nu}} \right)}$$
$$= \left(e^{\ln \left(\sum_{\nu} e^{\beta - c_{ij\nu}} \right)} \right)^{\frac{\beta_d}{\beta}} = \left(\sum_{\nu} e^{\beta - c_{ij\nu}} \right)^{\frac{\beta_d}{\beta}}$$

Thus only similar if scale parameters are identical

3.2

Practical topics

Practical topics

- Role of constraints: Car ownership
- Car passenger
- Parking
- What comes first: destination choice or mode choice?
- Multimodality

Car ownership

• How is that accounted for so far?

- Implicit
 - Mode specific constant
 - Distribution functions
- Explicit approach
 - Split demand matrix in matrix for people having a car and people not having a car available and apply appropriate functions

Car passenger

- Why is this relevant?
- Simple approach
 - Exogenous car occupancy rate per trip purpose
- Comprehensive approach
 - Car passenger and car driver as separate modes
- Problem in both cases?

No guarantee for consistency in trip patterns car driver and car passenger

Parking

- Would you include it, and if so, how?
- How would you do it in case of tours?
- How would you do it in case of trips?
- What about morning and evening peak? Assign half of parking costs to a trip (origin and destination)?

What comes first: trip distribution or mode choice?

• What is the order we discussed so far?

Mode preferences appear to be pretty strong

Multimodality?

- Approach so far: clear split between car, public transport (and slow modes)
- Special case: separate modes for train and BTM
- 80% of train travellers use other modes for access and/or egress
 Bus/tram/metro, but also bike and car
- So where do we find the cyclist to the station?

Multimodal trips

Simultaneous route/mode choice

