CIE4491 Lecture. Quantifying stormwater flow – Rational method

27-5-2014 Marie-claire ten Veldhuis, Watermanagement Department

TUDelft

Rational method for stormwater drainage system design

Rational method:

Q(t) = C.I.A

- Q = inflow into manhole (m³/s)
- C = Runoff coefficient, representing runoff losses (-)
- I = rainfall intensity (mm/h or l/s/ha)
- A = catchment area connected to urban drainage system (m^2)

Rational method for stormwater drainage system design

Rational method:

Q(t) = C.I.A

- 1. Determine size and characteristics of subcatchment areas
- 2. Determine runoff coefficient C for subcatchment areas
- 3. Calculate concentration time at critical inflow points in drainage system
- 4. Determine critical rainfall intensity based on concentration time and IDF curve
- 5. Calculate Q at all critical inflow points

Runoff coefficient C: dependent on catchment type

TUDelft

Flat roofs Inclined roofs Impervious area Pervious area

Contributing area per inflow point (manhole)

CIE4491 Lecture Rational Method

7

Time of concentration

Time required for surface runoff to flow from remotest part of catchment to inflow point under consideration

 Two components time of entry (<i>t_e</i>) time of flow (<i>t_f</i>) 	Return period (y)	Time of entry (min)
	1	4-8
$t_c = t_e + t_f$	2	4-7
	3	3-6

Time of entry & time of flow

In reality, time of entry varies with

- surface roughness
- slope & length of flow path
- rainfall intensity
- Time of flow depends on
 - Hydraulic properties of pipe flow velocity
 - Length of flow path

Rational method for urban drainage design

Steady state stormwater flow:

$$Q_n = i \times \sum_{m=1}^n C_m A_m$$

 Q_n = flow at location with *n* upstream sections (l/s)

- *i* = critical rainfall intensity (l/s/ha (or mm/h)) for return period T and concentration time t
- C_m = runoff coefficient of catchment discharging to section m

 A_m = catchment area discharging to section m (ha)

Rational method

Assumptions:

- Rainfall is uniform over the whole catchment area
- Catchment imperviousness remains constant throughout storm
- Flow in the system is at constant velocity throughout t_c
- Steady state flow reached when $t_{storm} \ge t_c$
- Critical rainfall intensity for at points in system at time $t = t_c$

Rational method: stationary conditions

Hydrograph response to continuous rainfall (graph b)

Critical rainfall intensity

Summary rational method for stormwater system design

- Choose return period of rainfall (*T*)
- Estimate contributing areas for each pipe and run-off coefficient
- Assume flow velocity of 1 m/s
- Estimate maximum time of concentration (t_c) for connected catchment areas
- Read critical rainfall intensity from IDF curve
- Calculate flow rate in each pipe according to:

$$Q_n = i \times \sum_{m=1}^n C_m A_m$$

Delft

- Adjust diameters of pipes if necessary
- Check flow velocity and concentration time

Example: calculate design flow for each node

Impervious area (%)	50	60	40	30	30
Impervious area per node (ha)					
Cum. Area per node (ha)					

Area	Α	В	С	D	Ε
Area per node (ha)	0.5	2	4	5	3
Impervious area (%)	50	60	40	30	30
Impervious area per node (ha)	0.25	1.2	1.6	1.5	0.9
Cum. Area per node (ha)	5.45	5.2	4.5	2.4	0.9

Assume flow velocity 1 m/s

Area	Α	В	С	D	Е
Time of concentration (min)					
		·			

Assume flow velocity 1 m/s

Area	Α	В	С	D	Ε
Time of concentration (min)	29	28	25	18.3	10

Critical rainfall intensities from IDF curve

Design flow for each node

Area	Α	В	С	D	Ε
Time of concentration (min)	29	28	25	18.3	10
Rainfall intensity (l/s/ha)	40	40	45	50	70
Cumulative area (ha)	5.45	5.2	4.5	2.4	0.9
Design flow (I/s)	218	208	202	120	63

Rainwater flow, remember:

- Highly variable (0 extreme): no system can cope with all possible rainfall intensities
- High rainfall intensity is critical
- Stormwater flow is large compared to wastewater flow
- Translation into design values : statistics and assumptions

