CIE4491 Lecture. Hydraulic design

Marie-claire ten Veldhuis 19-9-2013

Challenge the future

Hydraulic design of urban stormwater systems

Focus on sewer pipes

Pressurized and part-full pipe flow

- Saint-Venant equations and its simplifications
- Differences between part-full and pipe flow
- Part-full flow in pipes
- Local losses in sewer networks
 - Orifice
 - Gully pot, manhole
 - Hydraulic jump
 - Weir

Delft

2

Stormwater systems – design steps

Quantify stormwater design flow rate

- Run-off model, rational method
- > Determine pipe capacity based on full pipe flow
 - Computationally easier
 - Max Capacity is reached at 85% filling rate
 - Actual capacity is only 5% greater than for fully pipe, but not stable
- Determine required D_h
 Select standard D > D_h

Delft

$$D_h = \frac{4A}{\Omega} = 4R_h$$

- Account for full pipe flow condition at maximum capacity
- Account for part-full flow for all other conditions (esp. combined systems – dry weather flow)

De Saint-Venant momentum equation

$$\frac{\partial Q}{\partial t}_{I} + \underbrace{\frac{\partial}{\partial x} \left(\frac{Q^{2}}{A}\right)}_{II} + \underbrace{g \cdot A \cdot \frac{\partial \left(y+z\right)}{\partial x}}_{III} + \frac{\tau}{\rho} \cdot \Omega = 0$$

Q, A, z, Ω , τ , ρ are discharge, flow area, bottom elevation, wet perimeter, wall shear stress and density.

y is the water depth (part-full flow) or pressure head (pipe flow)

Applicable for part-full flow and pressurized pipe flow!

It comprises 4 parts:

- I. Advective acceleration (inertia)
- II. Convective acceleration (changes in flow cross-section)
- III. Gravity force
- IV. Friction force

UDelft

De Saint-Venant continuity equation

$$B\frac{\partial y}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

B is the surface width, y is water depth (part-full flow) or pressure head (pressurised flow)

➢ Part full flow: Internal storage at the free surface. Each element behaves like a storage tank with surface area B*∆x. The net discharge ∆Q is stored in the element.

Full pipe flow: B = 0, pipe elasticity and liquid compressibility are neglected $\rightarrow \frac{\partial Q}{\partial Q} = 0$

$$\frac{\partial Q}{\partial x} = 0$$

Typical applications of De Saint Venant terms momentum equations

a. Rainfall event (sewer network filling and draining)	
 b. Rapid filling event at maximum hydraulic grade line 	
c. Steady varied flow (in part-full pipe)	
d. Steady full pipe flow	
e. Part-full flow at normal depth	

6

Typical applications of De Saint Venant terms momentum equations

a. Rainfall event (sewer network filling and draining)	Complete De Saint-Venant equations: Terms I, II, II, IV
 b. Rapid filling event at maximum hydraulic grade line 	$\frac{\partial Q}{\partial t} + gA \frac{\partial (y+z)}{\partial x} = 0$ Terms I, III
c. Steady varied flow (in part- full pipe)	$\frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + gA \frac{\partial (y+z)}{\partial x} + \frac{\tau}{\rho} \frac{\text{Terms II, III, IV}}{\Omega = 0}$
d. Steady full pipe flow	$gA\frac{\partial y}{\partial x} + \frac{\tau}{\rho}\Omega = 0 , y > D$ Terms III, IV
e. Part-full flow at normal depth	$gA\frac{\partial z}{\partial x} + \frac{\tau}{\rho}\Omega = 0$ Terms III, IV

7

Typical applications of De Saint Venant terms

Rainfall event (sewer network filling and draining)	Complete De Saint-Venant equations
Rapid filling event at maximum hydraulic grade line	$\frac{\partial Q}{\partial t} + gA \frac{\partial (y+z)}{\partial x} = 0$
Steady varied flow (in part-full pipe)	$\frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + gA \frac{\partial (y+z)}{\partial x} + \frac{\tau}{\rho} \Omega = 0$
Steady full pipe flow Independent of bottom slope!	$gA\frac{\partial y}{\partial x} + \frac{\tau}{\rho}\Omega = 0$, $y > D$
Part-full flow at normal depth Friction slope=bottom slope!	$gA\frac{\partial z}{\partial x} + \frac{\tau}{\rho}\Omega = 0$

CIE4491 Hydraulic design of urban stormwater systems

9

 \mathbf{Q}_{α}

Friction term relations

Colebrook-White/Darcy-Weisbach
 Typical values λ = 0.01 - 0.04

- Darcy/Fanning friction factor (UK)
 Typical values f = 0.003 0.012
- Chezy friction factor
 Typical values C = 40 85

> Manning

- > Typical values n = 0.009 0.022 (SI units)
- n is dependent of units used

 $\Delta H = \lambda \frac{L}{D_{\rm h}} \cdot \frac{v^2}{2g}$ $\Delta H = f \frac{L}{R_{L}} \cdot \frac{v^{2}}{2g} \quad f = \frac{1}{4} \cdot \lambda$

 $D_h = \frac{4A}{\Omega} = 4R_h$

$$v = C \sqrt{R_h \frac{\Delta H}{L}} \qquad C = \sqrt{\frac{\delta g}{\lambda}}$$

٨IJ

$$v = \frac{1}{n} R_h^{0.667} \left(\frac{\Delta H}{L}\right)^{0.5}$$

Wall shear stress correlations (turbulent conditions)

Colebrook-White	$\tau = \frac{\lambda}{8}\rho v^2 ; \frac{1}{\sqrt{\lambda}} = -2\log\left(\frac{2,51}{Re\sqrt{\lambda}} + \frac{k}{3,71D}\right)$
Darcy/Fanning	$\tau = \frac{f}{2}\rho v^2$
Chezy	$\tau = \rho g \frac{v^2}{C^2}$
Manning	$\tau = \rho g \frac{v^2 n^2}{R_h^{1/3}}$

Given a sewer pipeline with the following dimensions:

Connected surface area: 2 ha (70% impervious) Design rainfall intensity: 90 l/s/ha

12

Question: what is the design discharge?

Connected surface area: 2 ha (70% impervious) Design rainfall intensity: 90 l/s/ha

Connected surface area: 2 ha (70% impervious) Design rainfall intensity: 90 l/s/ha

Question: Calculate the energy levels in nodes 1 and 2?

Connected surface area: 2 ha (70% impervious) Design rainfall intensity: 90 l/s/ha

Question: energy levels in nodes 1 and 2?

Connected surface area: 2 ha (70% impervious) Design rainfall intensity: 90 l/s/ha

\Rightarrow Additional data:

TUDelft

Groundlevel: +2mNAP; Waterlevel at outflow: +1mNAP

Answer: energy levels in nodes 1 and 2

TUDelft

Note: pipe outflow below surface water level \Rightarrow Flow condition:

full pipe, pressurised flow

$$\Rightarrow$$
 Apply Darcy Weisbach: $dH = \lambda \frac{L}{D} \frac{v^2}{2g}$; $\lambda = 0.02[-]$; A=0.28m²
(De Saint-Venant terms III and IV: gravity and friction)

Answer: energy levels in nodes 1 and 2

TUDelft

Apply Darcy Weisbach: $dH = \lambda \frac{L}{D} \frac{v^2}{2g}$; $\lambda = 0.02[-]$; A=0.28m²; v=0,45m/s \Rightarrow dH=0,07m Energy levels: ?

Answer: energy levels in nodes 1 and 2

Delft

Energy loss according to Darcy Weisbach: dH=0,07mEnergy levels: node 1: $H_1=+1mNAP$; node 2: $H_2=+1.07m$

Delft

NB: we have not defined a bottom slope! Is this relevant?

Energy loss according to Darcy Weisbach: dH=0,07mEnergy levels: node 1: $H_1=+1mNAP$; node 2: $H_2=+1.07m$

Question: What is the expected water depth in the sewer?

Given following conditions :

Flow rate = 640 m3/h Sewer diameter = 500 mm Slope = 1:200 Friction Factor = 0.015

Question: What is the expected water depth in the sewer?

Given following conditions :

Flow rate = 640 m3/h Sewer diameter = 500 mm Slope = 1:200 Friction Factor = 0.015

Check: flow rate for full pipe flow conditions, assuming flow at normal depth

Answer: step 1, determine full-pipe flow

Given following conditions :

Flow rate = 640 m3/h Sewer diameter = 500 mm Slope = 1:200 Friction Factor = 0.015

$$\frac{dH}{L} = \lambda \frac{v^2}{2gD}$$

From Darcy-Weisbach, assuming flow at normal depth (hydraulic gradient equals bottom slope 1:200): $v_{full} = 1.81 \text{ m/s}; Q_{full} = 1280 \text{ m3/h}$

Note: part-full flow conditions for given flow rate (640 m3/h)

Part-full geometric formulae

Water depth y, angle α Width water surface, B

Wet area, A

Wetted perimeter, Ω

Hydraulic diameter, D_h

Part-full vs full pipe geometric relations

Wet area ratio

Wetted perimeter ratio

Hydraulic diameter ratio

$$\frac{A}{A_f} = \frac{1}{\pi} \left[\cos^{-1} \left(1 - \frac{y}{R} \right) - \frac{B}{D} \left(1 - \frac{y}{R} \right) \right]$$
$$\frac{\Omega}{\Omega_f} = \frac{1}{\pi} \cos^{-1} \left(1 - \frac{y}{R} \right)$$
$$\frac{R_h}{R_{h,f}} = \frac{A/A_f}{\Omega/\Omega_f}$$

Part-full vs full pipe flow properties

Assuming:

- Constant dH/dx equal to bottom slope
- Normal flow in part-full situation
- Constant pipe friction factor

Velocity ratio

Discharge ratio

Reynolds number ratio

$$\frac{v}{v_f} = \sqrt{\frac{R_h}{R_{h,f}}}$$

$$\frac{Q}{Q_f} = \frac{A}{A_f} \sqrt{\frac{R_h}{R_{h,f}}}$$

$$\frac{\text{Re}}{\text{Re}_f} = \frac{R_h}{R_{h,f}} \sqrt{\frac{R_h}{R_{h,f}}}$$

Part-full vs pipe flow properties

TUDelft

Answer: step 2, determine filling rate Q/Q_f

Given following conditions :

Flow rate = 640 m3/h Sewer diameter = 500 mm Slope = 1:200 Friction Factor = 0.015

$$\frac{dH}{L} = \lambda \frac{v^2}{2gD}$$

From Darcy-Weisbach, assuming flow at normal depth (hydraulic gradient equals bottom slope 1:200): $v_{full} = 1.81 \text{ m/s}; Q_{full} = 1280 \text{ m3/h}$

Q / $Q_f = 0.5$. Pipe is half full - use: Q/ Q_f in previous slides

Answer: step 3, determine flow depth in sewer

Hydraulic sewer design, special structures (weirs, valves etc.)

- Specific energy E: water depth + velocity head
- Specific energy E defined for free-surface flows
- Specific energy is energy relative to the bottom/bed

Relevance of specific energy E drives steady, varied flow equation

Delft

E in rectangular and circular conduit

$$\left.\frac{\partial E}{\partial y}\right|_{y_c} = 0$$

$$\frac{dE}{dy} = \frac{-Q^2}{gA^3}\frac{dA}{dy} + 1 = 0 \qquad A_c = y_cB_c$$

Rectangular conduit

 $E_{\min} = \frac{3}{2} y_c$

Circular conduit

$$v_c = \sqrt{gy_c}$$
 $Fr_c = 1$ $v_c = \sqrt{g \frac{A_c}{B_c}}$

$$E_{\min} = \frac{A_c}{2B_c} + y_c$$

Shooting Flow, Tranquil Flow

Critical depth marks transition from tranquil to shooting flow At critical depth Fr = 1

If $\gamma > \gamma_c$ then: tranquil flow or subcritical flow Information can be propagated upstream and downstream

If $\gamma < \gamma_c$ then: shooting flow or supercritical flow Information can only be propagated downstream

Varied flow profiles (mild slope)

- Mild slope: $y_n > y_c$
- M1 backwater curve (during filling of pump pit and sewers)
- M2 drawdown curve (during dry-weather-flow towards pit)

Varied flow (steep slopes)

- Steep slope $y_n < y_c$
- S1 approaches the horizontal
- S2 drawdown curve in steep slope (transition mild \rightarrow steep)
- S3 may occur downstream of a gate valve in a steep slope

Water levels h₁ always relative to weir crest

TUDelft

- short crested weir $Q = \frac{2}{3}b\sqrt{2g} \cdot h_1^{3/2}$
- Broad-crested weir (critical) $Q = 1.7 \cdot b \cdot C \cdot h_1^{3/2}$

• Broad-crested weir (subcritical) $Q = b \cdot C \cdot h_2 \sqrt{2g(h_2 - h_1)}$, $h_2 \ge \frac{2}{3}h_1$

 $, h_2 < \frac{2}{3}h_1$

Weir

Depth at control point determines discharge (critical flow)

Manhole

Entrance point Multiple pipes connected Vertical transport

Typical head losses (for smooth bottom dz = 0)

Inflow from manhole

$$h_L \approx 0.5 \frac{V^2}{2g}$$

Outflow from pipe into manhole

$$h_L \approx \frac{V^2}{2g}$$

TUDelft

CIE4491 Hydraulic design of urban stormwate

Local losses in sewer networks

Local losses are NOT minor losses in sewer networks

General concept of deceleration losses

- No energy loss in accelerating flow \rightarrow Bernoulli
- The energy is lost in decelerating flow \rightarrow Momentum balance

Example: contribution of local losses

Question: What is the relative contribution from the local manhole losses to the total head loss?

If:

- I manhole every 50 metres; local loss factor k = 1
- Sewer diameter 500 mm, flow velocity 1 m/s
- friction factor 0.015

Design assignment, this week:

- Define design requirements: Return period T for flooding and for critical rainfall

Mofchi

Course CIE 4491

Fundamentals of Urban Drainage

- Choose applicable IDF-curve
- Determine catchment areas per pipe segment
- Determine runoff coefficients for catchment areas
- Quantify wastewater flow based on population and industry
- Quantify stormwater flow applying rational method
- Determine dimensions of sewer pipes (and weirs etc.)
- Start calculation hydraulic gradients for stormwater

systems

