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Recap traffic flow variables

Microscopic
(vehicle-based)

Macroscopic
(flow-based)

Space headway (s [m]) Density (k [veh/km])
Time headway (h [s]) Flow (q [veh/h])
Speed (v [m/s]) Average speed (u [km/h])

s=h*v q=k*u

Presentator
Presentatienotities
Calculate the density from local measurements by observed flow and average speed => use an appropriate average speed
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Excercise– a task for you!

• What is the average speed if you travel 
• 10 km/h from home to university
• 20 km/h on the way back

• What is the average speed if you make a trip with speed
• v1 on the outbound trip
• v2 on the inbound trip

• What is the average speed if you split the trip in n 
equidistant sections, which you travel in vi
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Similar problems arise in traffic

• Local measurements, spatial average speed needed

• Weigh speed measurements
• Inversely proportional to speed
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The math…

• Weigh speed measurements (w)
• Inversely proportional to speed: wi=1/vi

Time-average of pace (1/v)
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… and the effect

What is higher
time mean speed (A) or space mean speed (B)?
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Summary

• Speed averaging is not trivial

• Obtain time mean speed from loop detector data 
by harmonic average (i.e., averaging 1/v)

• Space mean speed is lower, 
with differences in practice up to factor 2



9Lecture 2 – Arrival patterns | 32

Overview of remainder of lecture

• Arrival process and relating probability distribution 
functions

• Poisson process (independent arrivals)
• Neg. binomial distribution and binomial distribution
• Applications facility design (determine length right-
or left-turn lane)

• Time headway distributions
• Distribution functions and headway models 
• Applications

• Speed distribution and free speed distributions 

Presentator
Presentatienotities
That is, if we consider a period of a certain length T, the number of arrivals is stochastic
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Arrival processes
• Insight into probability distribution of the number of vehicles 

arriving in a short time interval (e.g. 15 seconds) is important for 
several applications

No blocking back
due to extra lane

Blocking back
due to extra lane

 Example:
– Length of extra lane for left-turning 

vehicles at an intersection
– Probability that queue exceeds 

roadway space is limited (e.g. 5%)
 Models for the distribution of vehicles 

arriving in a short period of time
– Poisson process
– Binomial process
– Negative binomial process

Arrival
location x
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Poisson process
• Number of vehicles passing x during certain period of 

length h
• N(h) can be described by a stochastic variable
• Assume independent arrivals

• Dilute traffic operations w. sufficient passing 
opportunities

• No upstream disturbances 
(e.g. signalized intersection)

Then nr of arrivals N(h) is Poisson:
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Properties of the Poisson distribution

• Mean and variance are equal (= µh) for a certain 
period of length h

• If “mean = variance” then Poisson is likely
• And thus independence of arrivals is a good 

assumptions
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Poisson process (2)
• Examples of Poisson distributions for different periods / intensities 

3=hµ0.6=hµ
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Poisson and real data (arrivals / 15s)
Two-lane rural road in the Netherlands
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Poisson and real data (arrivals / 15s)
Two-lane rural road in the Netherlands
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Poisson and real data (arrivals / 15s)
Two-lane rural road in the Netherlands
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Poisson process (3): exercise

• Application to left-turn lane design problem
• Intensity for left-turning lane during 

peak-hour = 360 veh/h
• Duration of the red-phase 50s
• In 95% of the cycles must be undersaturated
• How long must the left-lane be?

• Assume Poisson process; 
• Mean number of arrivals 50·(360/3600) = 5
• Thus µh = 5 veh per ‘h’

(= qh with q = 360 and h = 50/3600) Number of arrivals
N = Poisson

Presentator
Presentatienotities
So, during a red phase, an average of 5 vehicle arrive
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Poisson process (3): exercise

• Application to left-turn lane design problem
• Intensity for left-turning lane during 

peak-hour = 360 veh/h
• Duration of the red-phase 50s
• In 95% of the cycles must be undersaturated
• How long must the left-lane be?

• Assume Poisson process:
• Mean number of arrivals 50·(360/3600) = 5
• Thus λ = 5 veh per aggregation interval

(= qh with q = 360 and h = 50/3600) Number of arrivals
N = Poisson

Presentator
Presentatienotities
So, during a red phase, an average of 5 vehicle arrive
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Poisson process (4)

• From graph:
Pr(N≥8) = 0.9319
Pr(N≥9) = 0.9682

• If the length of the 
left-turn lane can 
accommodate 9 
vehicles, the 
probability of blocking 
back = 3.18% 
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Two other possibilities

1. Vehicles are (mainly) following
=> binomial distribution

2. Downstream of a regulated intersection
=> negative binomial distribtution
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Binomial process

• Increase traffic flow yields formation of platoons 
(interaction)

• Poisson is no longer valid description
• Alternative: Binomial process

• Binomial distribution describes the probability of n
successful, independent trials; the probability of 
success equals p; n0 = max. number of arrivals within 
period h
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Properties of binomial distribution

• Mean: n0p and variance: n0(1 – p)p
• Note that variance < mean
• No rationale why approach yields reasonable results
• Choose appropriate model by statistical testing!
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Binomial process (3)

• Left-turn example revisited
• Note: variance < mean!

• Assume a variance of 2.5 veh2 / cycle (=50 sec)
• Determine how long the left-turning lane must be under these 

assumptions
• Hint: use the recursive formula in reader

(Home work)
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Downstream of controlled 
intersection

• More likely to have bunched vehicles
(Why?)

• Negative binomial distribution
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How to determine model to use?

Some guidelines:
• Are arrivals independent => Poisson distribution

• Low traffic volumes
• Consider traffic conditions upstream (but also 
downstream)

• Consider mean and variance of arrival process
• Platooning due to regular increase in intensity? 

=> Binomial
• Downstream of signalized intersection? 

=> Negative binomial
Definitive answer?
• Use statistical tests (Chi-square tests) to figure out 

which distribution is best
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Time headways
• A time headway of a vehicle is defined by the period 

between the passing moment of the preceding vehicle 
and the vehicle considered

• Distinction between
• Net headway (gap): 
rear bumper –
front bumper

• Gross headway:
rear bumper –
rear bumper

• Headway distribution models 
generally pertain to a single
lane
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Example headway distribution two-lane 
road

• Site: Doenkade

0 2 4 6 >8
gross headway W (s)
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Exponential distribution

Presentator
Presentatienotities
Good or not? Why?
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Maximum likelihood

• Maximum-likelihood method aims to maximize the ‘probability’ of 
the parameters given the sample (observation)

• The likelihood of a single observation hi equals (lambda 
parameter)

• The likelihood of an entire sample {hi} equals
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Optimisation of parameters

• The probability of an entire sample {hi} equals

• ML entails maximizing this likelihood, i.e.
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Composite headway models

Composite headway models distinguish 

• Vehicles that are driving freely (and thus arrive 
according to some Poisson process, or whose 
headways are exponentially distributed)

• Vehicles that are following at some minimum 
headway (so-called empty zone, or constrained 
headway)
which distribution is suitable?
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Basic idea

• Combine two distribution functions
Contstraint: fraction phi
Free: fraction (1-phi)

• Application: capactiy estimation
How?
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Estimation: likelyhood or graphically
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Summary

• Arrival distribution: 
Free flow: headways exponential, 

nr of per aggregation time: Poisson
Following: binomial

• Calculation of required dedicated lane length

• Composite headway models => capacity estimation
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Binomial process (2)
• Examples of the binomial process



36Lecture 2 – Arrival patterns | 32

Cowan’s M3 model

• Drivers have a certain minimum headway x which can be 
described by a deterministic variable

• Minimum headway x describes the headway a driver needs for safe 
and comfortable following the vehicle in front

• If a driver is not following, we assume that he / she is driving at a 
headway u which can be described by a random variate U ~ pfree(u)

• The headway h of a driver is the sum of the free headway u and the 
minimum headway x, and thus H = x+U

• The free headway is assumed distributed according to the 
exponential distribution (motivation?)
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Cowan’s M3 model

• Probability density function of H

• Unless there are major upstream disturbances, the free headways 
are exponentially distributed, i.e.

• The model thus assumes that all constrained drivers maintain 
headway x, while the headway of the unconstrained drivers is 
distributed according to a shifted exponential distribution

1 2( ) ( ) (1 ) ( ) ( ) ( )= − + − = +freep h x h p h p h p hφδ φ

( )
2 ( ) (1 ) ( ) (1 ) ( )   for  − −= − = − − >h x

freep h p h H h x e h xλφ φ λ
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Cowan’s M3 model

• Example of
Cowan’s M3 model

• (note that h0 = x)
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Branston’s headway distribution model

• Rather that assuming one fixed x for all drivers, we can assume 
that different drivers maintain different minimum headways

• Inter-driver differences are reflected by assuming that x is also a 
stochastic variable X with a specific distribution function pfollow(x)

• This yields the composite headway distribution model of 
Branston:

0

( ) ( ) (1 ) ( )

( ) (1 ) ( )− −

= + −

= + − ∫

follow free

h
h s

follow follow

p h p h p h

p h e p s e dsλ λ

φ φ

φ φ λ
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Buckley’s composite model

• Drivers have a certain minimum headway x which can be 
described by a random variable X ~ pfollow(x)

• Minimum headway describes the headway a driver needs for safe 
and comfortable following the vehicle in front

• X describes differences between drivers and within a single driver

• If a driver is not following, we assume that he / she is driving at a 
headway u which can be described by a random variate U ~ pfree(u)

• The headway h of a driver is then the minimum between the free 
headway u and the minimum headway x, and thus H = min{X,U}
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Buckley’s composite model3

• Consider a threshold value h* such that all observed headways h
are larger than h* are free headways, i.e. pfollow(h) = 0, h > h*
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Buckley’s composite model4

• Unless there are major upstream disturbances, the free headways 
are exponentially distributed, i.e.

• For headways h smaller than h*, we need to correct the total 
headway. This is done by removing from the exponential distribution 
the fraction of vehicles that have preferred following times larger 
than h

• The fraction of drivers with headway h that are not following equals

• Then for h < h* we have for the free headway part

*( ) (1 ) ( )   for  h
freep h p h A e h hλφ λ −= − = >

0
(1 ( )) (1 ) ( )

h

followh p dθ φ η η− = − ∫

2 0
( ) (1 ) ( ) (1 ( )) (1 ) ( )

hh h
free followp h p h h A e A e p dλ λφ θ λ λ φ η η− −= − = − = − ∫
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Buckley’s composite model5

• For the total headway distribution, we then get

where A denotes the normalization constant and can be determined from

• Special estimation procedures exist to determine λ, φ and p.d.f. pfollow(h)
• Parametric: specify p.d.f. pfollow(h) with unknown parameters
• Distribution free, non-parametric, i.e. without explicit specification pfollow(h)

0
( ) ( ) (1 ) ( )

hh
follow followp h p h A e p dλφ φ λ η η−= + − ∫

0 0
( ) 1 ( )followp d A e p dληη η λ η η

∞ ∞ −= ⇒ =∫ ∫
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Determination of h*

• For h > h*, distribution is exponential, i.e.

• Consider survival function S(h)

• Obviously, for h > h*, we have 
• Suppose we have headway sample {hi}
• Consider the empirical distribution function

• Now draw and determine h*, A, and λ

*( )   for  hp h A e h hλλ −= >

( ) Pr( ) h

h
S h H h A e d Aeλη λλ η

∞ − −= > = =∫

1ˆ ( ) 1 ( )n iS h H h h
n

= − −∑

[ ]ln ( ) ln ln( )hS h Ae A hλ λ− = = − 

ˆln ( )nS h 
 
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Applications of headway 
distributions

• Analysis of crossing a street / gap-acceptance 

• Calculate waiting time or delay

• Capacity estimation (without capacity observations) using composite headway models of Cowan / Branston / Buckley 

• Estimate all parameters of composite headway distribution

• Assume all vehicles are following (ϕ = 1) to see that (p(h) = pfollow(h)), i.e. headway is minimal: we have mean(H) = mean(X)

• Recall that q = 1/mean(H) 

• Estimate mean headway (mean empty zone) and capacity

• Vehicle generation for micro-simulation

0

1 1
( ) ( )follow

C
mean X xp x dx

∞= =
∫



46Lecture 2 – Arrival patterns | 32

Binomial process (3)

• Left-turn example revisited
• Assume a variance of 2.5 veh2 / cycle (=50 sec)
• Determine how long the left-turning lane must be under these 

assumptions

• Mean number of arrivals 5 : n0p = 5
• ‘Assume’ variance of 2.5 veh2 : n0(1 – p)p = 2.5
• Then we can determine: 

p = 0.5 and n0 = 10

• Results are very sensitive to variance!!
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Binomial process (4)

 From graph:
Pr(N≥7) = 0.9453
Pr(N≥8) = 0.9893

 If the length of the 
left-turn lane can 
accommodate 7 
vehicles, the 
probability of 
blocking back = 
5.47% 
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Negative Binomial distribution

• Also consider negative Binomial distribution (see course 
notes)

• Appears to hold when upstream disturbances are present

• Choose appropriate model by trial and error and statistical testing

( ) ( )00 1
Pr ( ) 1 nnn n

N h n p p
n

+ − 
= = − 

 
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Neg. bin. distribtion & observations
Two-lane rural road in the Netherlands
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Neg. bin. distribtion & observations
Two-lane rural road in the Netherlands
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Neg. bin. distribtion & observations
Two-lane rural road in the Netherlands



52Lecture 2 – Arrival patterns | 32

Example real-life headway distribution

• Pedestrian experiments
• Headways of pedestrians

passing a certain cross-section (wide
bottleneck scenario)
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Exponential distribution (2)

• Exponential distribution function / survival function

1

0.5

Pr

0
 2              4              6              8             10           12            14 

h

Pr{H # h}

Pr{H > h}

( ) 1mean H H
q

= =

( ) 2

1var H
q

=
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Cumulative vehicle plots
• Cumulative flow function Nx(t): 

number of vehicles that have 
passed cross-section x at time 
instant t

• Nx(t): step function that 
increases with 1 each time 
instant vehicle passes

• Horizontal axis: trip times
• Vertical axis: vehicle count

(storage)
1
( )xN t

2
( )xN t

time (s)

time (s)
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Examples of cumulative curves?

time

N 2
3

4

6

1

5
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Construction of cumulative curves
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Information in cumulative curves

time

N dN/dt = 
??flow
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Cumulative vehicle plots3

• Flow = number of vehicles passing x (observer) during T
• What is the flow in this case?

6.5 7 7.5 8 8.5 9 9.5
0

500

1000

1500

2000

2500

time (h)

Observer 1 

T = 0.5 h

N1(7.5) = 1000

N1(8.0) = 1500
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Information in cumulative curves

time
1

2

Which line corresponds with detector 1?

N A
B



61Lecture 2 – Arrival patterns | 32



62Lecture 2 – Arrival patterns | 32

Information in cumulative curves

time

N

1

2
1

2

Travel time

N
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Intermezzo - capacity

• Capacity is the maximum flow on a cross section
• What determines the capacity
• Nr of lanees
• Minimum headway influenced by
• Speed limit
•

1.5 s/veh = 2400 veh/h
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Bottleneck in section
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What if bottleneck is present

1

2

Flow limited to capacity
Travel time increses
More vehicles in the section

time

N A
B

Travel time
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Delay = area

time

1

2

Total delay = sum delay over vehicles
Total delay = sum # extra vehicles in section

N A
B
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Controlled intersection
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Delay (2)

Capacity

Capacity
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Real-life curves
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Observer 1 

Observer 8 

Travel time vehicle 1000 

Travel time vehicle 500 

Number of vehicles 
between observer 1 and 8

Number of vehicles 
between observers can be
used to determine density!
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Application
• Applications: identification of stationary periods 

(constant flow)
• In this case, cumulative curves are (nearly) straight 

lines

Observer 8
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Oblique curves
• Amplify the features of the curves by applying an oblique scaling 

rate q0
• Use transformation: N2=N-q0t

Presentator
Presentatienotities
figure shows so-called slanted cumulative curves N′(x,t) defined by N′(x,t)=N(x,t)-q′(t-t0) for some value of q′
Using these slanted curves rather than the regular cumulative curves can be useful to identify changes in the flowrate more easily. 
The three arrows show for instance, when the reduction in the flowrate at 7:15 due to increased conflicting flows on the intersection reach observer 4 and observer 1 respectively. That is, the slanted cumulative curves can be used to identify the speed at which congestion moves upstream. This topic will be discussed in more detail in the remainder of the syllabus.
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Oblique curves

• Notice that density can still be determined directly from the 
graph; accumulation of vehicles becomes more pronounced

• This holds equally for stationary periods
• For flows note that q0 needs to be added to the flow determined 

from the graph by considering the slope op the slanted 
cumulative curve
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Use of oblique curves

• Can delay be read directly from oblique cumulative curves
A=yes
B=no

• Can travel times be read directly from oblique cumulative curves?
A=yes
B=no
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Delay determination simpeler
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Deeper analysis

Capacity

Capacity

Demand

Capacity

Demand

Bottleneck
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Simplest queuing model

• “Vertical queuing model”
• Given the following demand profile, and capacity, give the 

(translated) cumulative curves (and determine the delay)
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Answer: cumulative curves
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Answer: flow representation
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Identifying capacity drop
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Identifying capacity drop

• Using oblique (slanted) cumulative curves show that capacity 
before flow breakdown is larger than after breakdown (-300 
veh/h)
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Learning goals

• You now can:
• Construct (slanted) fundamental diagrams
• Use these to calculate:
delays, travel times, density, flow

• In practice shortcoming:
Data is corrupt, and errors accumulate

• Test yourself: tomorrow in excersise
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