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The Human Controller
Class 3. …to action

Teacher:
• David ABBINK
• BioMechanical Engineering, Delft University of Technology, The Netherlands

Simulation

While computers are capable of sometimes beating the world’s best 
(human) chess masters, states Wolpert, “when it comes to dexterity, 
a five-year-old child could beat any machine being made.”

- Wolpert’s TEDx Lecture
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Learning Goals Lecture 2
After this lecture, you will be able to:

1. Reproduce the human sensors
1. Basics of anatomy, functionality of haptics (tactile & kinesthetic)

2. Apply methods to determine limitations of haptic perception

1. Apply the concept of admittance to explain neuromuscular feedback

1. Critically reflect on feedforward and feedback control

2. Critically reflect on the role of the neuromuscular system while 
performing a visual/vestibular tracking task
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• Linkage (skeleton)

• Actuators (muscles)

• Sensory system
• muscle spindles

(pos/vel feedback)
• Golgi tendon organs

(force feedback)

• Controller
(Central nervous system, 

posterior parietal cortex)

• Wires (neurons)

Xdesired

Xrealized

The Neuromuscular System
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• Linkage (skeleton)

• Actuators (muscles)

• Sensory system
• muscle spindles

(pos/vel feedback)
• Golgi tendon organs

(force feedback)

• Controller
(Central nervous system, 

posterior parietal cortex)

• Wires (neurons)

Fsensed

Fcontact

The Neuromuscular System
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Sensor processing decision motor
program

muscle

Nerve pulse Nerve pulse

central nervous 
system

Vision, Audio, and TactileInformation Processing: cognition 
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Sensor Reflex muscle

Nerve pulse Nerve pulse

Spinal cord

Vision, Audio, and TactileInformation Processing: ‘reflex’
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Haptic sensing (feeling):
Tactile and Proprioceptive sensors
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Function of haptic perception

• Gathering information
• Interaction with outside world
• About forces, movements and orientation of limbs

• Human-machine interaction
• Haptic Displays

• Vibrations (cell phone) 

• Forces (assistance, simulation)



9David Abbink – Human Controller |65

Two Kinds of Haptic Perception 

1. Kinaesthetic/Proprioceptive:

force and displacement
from tendon force, muscle stretch and 

stretch velocities

1. Tactile: “everything else” :
vibrations, temperature, pain, 
tickles, surface roughness,
shear stress etc.
from receptors in the skin 

Two kinds of haptic perception
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Sensing

Tactile Proprio. 

Sensing

Tactile Proprio. Tactile sensors
1. Merkel disk receptor

2. Meissner corpuscle

3. Pacinian corpuscle 

4. Ruffini ending

5. Golgi-Mazzoni corpuscle

6. Free nerve ending 

7. Hair tylotrich, hair-guard

8. Hair-down

9. Field

3

216

4

5

Anatomy: tactile
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Sensing

Tactile Proprio. 

Golgi Tendon Organ: force 
Muscle Spindles: position and velocity

Anatomy: proprioceptors



12David Abbink – Human Controller |65

Voisin, 2002

Experiment set-up

2D angle discrimination

Index finger positioned at ‘a’

Single to-and-fro movement
(a-b-c-b-a)

Subjects identify the larger of two angles (2AFC)

Proprioceptive and tactile contributions to 
haptic perception
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Tactile feedback No tactile feedback

Proprioceptive 
feedback

Active touch, both 
present (reference)

Active touch with finger 
anaesthesia,

only proprioceptive

No proprioceptive 
feedback

Passive touch, only 
tactile

Passive touch with
digital anaesthesia, 

neither

Experiment conditions

Proprioceptive and tactile contributions to 
haptic perception
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Tactile 
feedback

No tactile 
feedback

Proprio-
ceptive 

feedback
4.0° 7.2°

No proprio-
ceptive 

feedback
8.7°

Chance 
(>13°)

Experiment results

Proprioceptive and tactile contributions to 
haptic perception
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• … research on the computational principles of motor control can help us 
understand everyday occurrences like fights between your kids in the 
back seat of the family car. A few years ago, Wolpert set out to 
understand why these battles escalated. Each of his daughters, then age 
9 and 12, would always claim that the other one had hit her harder, so 
they would continue and hit harder each turn. He figured that sensory 
filtering was at work here, as in tickling: “Whenever you are getting 
sensations based on your own movements, you will subtract some of that 
from your own perception. Tit-for-tat actually escalates.” He confirmed 
the hypothesis with a tapping (not slugging) experiment, finding that the 
force of the taps increased 40% at each exchange. 

Sensory Noise 
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Influences on Haptic Perception
Sensory Weighting (Mugge et al., 2009)
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Influences on Haptic Perception

• What do you expect to influence whether you perceive a force or 
not?

Influences on Haptic Perception
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Bias force

Jones, 2002

Increase in bias force increases Just-Noticeable 
Difference proportionally

Time

Fo
rc

e

Bias

Influences on Haptic Perception
Influences on Haptic Perception
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Frequency:

Enriquez, 2002; Jones, 2002

Higher frequencies (up to 250 Hz) are easier to detect

Time

Fo
rc

e

Frequency (Hz)

Fo
rc

e 
(m

N
m

)

Influences on haptic perception
Influences on Haptic Perception
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Body location, shape and size of stimulator

Density of receptors in body parts is different
For example density of corpuscles of Meissner: 
Fingertips: 23 per mm2

Forearm: 1 per 36 mm2

Ratio: 800 to 1

Van Lunteren & Stassen, 1970

Greater amount of affected mechanoreceptors are 
easier to detect

Influences on haptic perception
Influences on Haptic Perception
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Distraction

BSc research:
Determination JND 
at three different task 
complexities

Geurtsen & Herfkens, 2004

Additional task deteriorates performance on haptic 
perception

Influences on haptic perception
Influences on Haptic Perception
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Footwear

0
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Bowling shoe

Sneaker

Sock

Covering of the skin (gloves, shoes)

Determination 
perception limits 
with different types of 
footwear

Altena & De Gier, 2004

Footwear deteriorates haptic perception

Influences on haptic perception
Influences on Haptic Perception
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Conflicting sensory input

In general vision is dominant over other modalities when conflicting 
information is presented

Nevertheless when more precise judgements are required the 
response modality dominates

Heller, 1999

e.g. larger objects of the same weight are perceived heavier

Influences on haptic perception
Influences on Haptic Perception
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How do you respond to a signal?

From Haptic Perception To Action

sensors

Brain

200 msstimulus

response

spine

stimulus

cognitive
response

From Perception to Action
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How do you respond to a signal?

From Haptic Perception To Action

muscle sensors

Brain

200 msstimulus

spine

stimulus

cognitive
responsereflexive

response

40 ms

passive
response

From Perception to Action
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1. Re-constructing Reality
• Tele-operation: restoring natural force feedback
• Over distance / in scale

2. Simulating Reality
• Training difficult manual tasks

3. Enhancing reality
• Games, Fun and Gadgets
• Art & Music
• Communication / Alerts/ Warnings
• Improving Manual Control

• Shared Control

Haptic ApplicationsHaptic Applications (more in class 7-9)
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Neuromuscular System
- generating force
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How do humans generate force?

• Humans generate force by contracting 
skeletal muscles 

• Skeletal muscles consist of muscle fibers

• Muscle fibers are built up from myofibrils, the 
basic force generating unit of muscles

• Muscles can only contract actively; 
extension is passive

Physiological and anatomical aspects

How do we generate force?
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How do humans generate force?
Physiological and anatomical aspects

Anatomy
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How do humans generate force?
Physiological and anatomical aspects

• Muscles can only contract 
actively due to chemical 
structure of the myofibrils

• Muscles cannot, therefore, 
actively extend

Anatomy
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How do humans generate force?

• Skeletal muscles are connected to 
bones via tendons

• Force, speed and unidirectional of 
movement of limbs is achieved via 
levers of bone-muscle attachments

Limb movement

Transfering muscle force to skeleton
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How do humans generate force?

• Bidirectional movement of limbs is achieved through a 
combinations of antagonistic muscle pairs

Limb movement

Moving a joint – muscle pairs
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How do humans generate force?

• Afferent neurons carry signals 
from the muscles to the spinal 
chord and the brain

• Efferent neurons carry signals 
form the brain and spinal chord 
to the muscle fibres 

Control of muscle force and limb movement

Information flow to and from muscles
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How do humans generate force?

• Conscious control requires input from the brain

• Limb movement is the result of automatic inhibition of antagonist 
muscle upon activation of agonist muscle

Control of muscle force and limb movement

Central Nervous System and Muscles
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Force-length & velocity relation
Muscle Force depends on: velocity and length
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Hill-type models

Fmax

Activation 
dynamics q(t)

Neural 
input force

contraction 
dynamics 
f(l), g(v)

Muscle length

Muscle velocity

Modeling Muscle Force Generation: Hill
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Fiber types
Motor Noise

• Force build-up is not perfectly smooth:
• motor noise

• Motor noise depends on
• Type of muscle
• Fatigue 

• Can be reduced 
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Neuromuscular System
- motor control
- experiments & modeling
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Motor Control – two types

Feed-forward control 
• Requires: Good internal model of interaction
• Most used: No perturbations

Fast goal-directed movements

Feedback control (impedance control)
• Requires: sensory information
• Most used: disturbance rejection
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Experimental study

Procedure
1. Learn trajectories in 

normal field
2. Perform in divergent 

force fields (4 strengths)
3. Randomly do stiffness 

measurements during 
some DF-trials

• Hogan: “Impedance control can be used to stabilize the arm”

• To what extent can impedance control be modified? 

Franklin et al (2004) - Impedance Control Balances Stability With Metabolically Costly
Muscle Activation. Journal of NeuroPhysiology
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Results
• Subjects learn to generate smooth trajectories in each unstable 

environment 
• Subjects adapted their endpoint stiffness to each unstable 

environment: the stronger the field, the larger the stiffness
• Overall stiffness (of manipulator + human) remained similar

All of this suggests that metabolic energy and stability 
margins are balanced during motion control
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Neuromuscular identification

• How do humans control posture?
• What is the role of motor reflexes?
• How effective is intrinsic joint stiffness (resulting from pretension of 

antagonist muscles)?

• Motivation
• Aircraft control (stability issues)
• Automotive control (steering, haptic gas pedal)
• Medical, understand & diagnose motor disorders

Controlling posture or forces: how?
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How do humans generate force?

• Reflexive behaviour is regulated via the 
spinal chord and does not require 
conscious control

• But: conscious control can influence the 
strength and nature of the response!

• Reflexive behaviour is fast and also 
automatically inhibits the antagonistic 
muscle to allow movement of the 
excited muscle

Control of muscle force and limb movement

Spinal Reflexes
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Strategies to resist force 
perturbations

• Co-activation of muscles (co-contraction):
• Increased muscle stiffness & viscosity
• Effective for large range of frequencies
• Costs much energy

• Proprioceptive feedback:
• Length, velocity and force feedback
• Energy efficient, only active if perturbations are present
• Only effective for low frequency perturbations due to time-delays in 

nervous system

Two strategies to resist perturbations
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Postural control:
Resisting external perturbations

External
forces

Drill
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Postural control:
Resisting ‘internal’ perturbations

‘Internal’
forces

cup
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How do we model limb movement?

• The neuromusculoskeletal system is modeled as a mass-spring-
damper system

• Humans can actively control the stiffness of the muscles 

Physical mass-spring-damper model

xarm

Simple Modeling of the Neuromuscular System



53David Abbink – Human Controller |65

How do we model limb movement?

• When in contact with objects, the grip is modeled as a very stiff 
system with some damping and no mass.

Physical mass-spring damper model

xarm xhandle

grip

grip

arm

arm
Fhandle

Simple Modeling of the Neuromuscular System
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Stretch amplitude & muscle activation 
(e.g., Cathers, 1999; Kearney and Hunter, 1983)

Frequency content of perturbation 
(e.g., Van Der Helm et al., 2002)

Dynamics of environment (stiffness, damping)
(e.g., Schouten et al. 2004, 2008b, Abbink et al. 2004)

Task instruction (transient response)
(e.g., Doemges & Rack 1992a,b; Abbink et al. 2004, 2009 )

Response to perturbations is highly adaptive

Simple Modeling of the 
Neuromuscular System

Adaptability of Neuromuscular Feedback
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α

F

1. Impose Force Perturbation
2. Task Instruction
3. Measure Signals

• Pedal Force
• Pedal Displacement
• Force Perturbation

4. Estimate Admittance

Simple Modeling of the 
Neuromuscular System

Measuring Neuromuscular Feedback
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can be estimated as frequency response function
input force/torque 
output position/rotation

captures causal dynamic response of a human to 
interaction forces with the environment

K B

I
Roughly resembles 2nd

order system

Highly adaptive!

Admittance:

X/F

frequency

Measuring Neuromuscular Feedback



57David Abbink – Human Controller |65

Time-variance in admittance (Abbink et al.)
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Tactile and kinesthetic contributions to 
admittance (Mugge & Abbink 2013)
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Conclusions Neuromuscular System
• Skeletal muscle is strongly non-linear (Hill)

• Non-linearity is essential in human motion
• Linearization is successful for control tasks with small amplitudes 

• Reflexive feedback gains are very important for the behaviour of neuro-
musculoskeletal systems

• Position feedback
• Velocity feedback
• Force feedback

• Co-contraction and Reflexive feedback gains are continuously adapted, 
near-optimal

• task instructions, environment, perturbations

• Endpoint behaviour can be captured by admittance

Conclusions about the Neuromuscular System
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The Role of the Neuromuscular System 
in visual / vestibular control loops
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The Lumped Neuromuscular System

- -

The neuromuscular system is usually considered as a limitation, and can be seen 
as a controller-actuator system between udesired and urealized

The neuromuscular system can be modeled as a first or second-order low-pass filter:
Lumped neuromuscular system.

Sensors Equalization Vehicle
Dynamics

Displays Neuromuscular
System

Control
Inceptor

+

Hlumped = 
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- -

The Neuromuscular System
Sensors Equalization Vehicle

Dynamics
Displays Neuromuscular

System
Control
Inceptor

+

-

--

-

Feed-
forward

Feed-
back
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Take Home Message 

Today you have learned:

1. About two kinds of haptic perception
1. Tactile
2. Proprioceptive

2. About Human Motion Control (muscles and reflexes)
1. Feedforward

1. Learn smooth movements over time

2. Motor noise

2. Feedback
1. stiff through co-contraction and reflexive activity

2. compliant through relaxed muscles and reflexive activity

3. Endpoint feedback properties can be captured by admittance
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