The Human Controller Frequency-Domain Analyses

Neuromuscular control

- Control of limbs

McRuer's Cross-over model

- Control of systems
- Response of visual, vestibular and NMS feedback to driving or flying

Teacher:

- David ABBINK
- BioMechanical Engineering, Delft University of Technology, The Netherlands

So far...

1. About Perception

- 1. All seven senses: physiology
- 2. Measuring limits of perception
- 3. Sensory Integration & Illusions

2. About Cognition

- 1. The Brain: physiology
- 2. About feed-forward and feedback
- 3. Skill, Rule, Knowledge based Behaviour

3. About Action

1. The Neuromuscular System: Physiology, Adaptabilty

4. About Design and Evaluation

1. Metrics vs Models

Learning Goals

After this class you will be able to:

Reproduce:

• McRuer's crossover model and parameter sensitivity

Apply:

- Frequency Domain Analysis to analyze Human Control
 - 1. The basics: mass-spring-damper systems
 - 2. FRFs and models of neuromuscular systems
 - 3. FRFs and McRuer cross-over models

Critically Reflect on

- Applicability of frequency domain analyses
- Applicability of McRuer's Crossover model

Why bother Modeling?

Measuring and Modeling Performance

Coventional System Optimization

Measure the impact of a new system by determining

- Statistical analysis (mean, std, CDF) of a dynamic signal
- Change in performance metric for different systems (tunings)

Shortcomings

- Time consuming
- Descriptive, but not predictive (hard to generalize)
- Many ways to achieve the same performance metric, unclear what situations cause change in the metrics, or interaction between them

Better way: use modeling!

Use System Identification Techniques to determine (causal and dynamic) relationships between input and output

Cybernetic Modeling!

Cybernetics: describing a human in control engineering terms : control gains, time delays, noise

Cybernetic Modeling!

Advantages of this evaluation method:

- Quantitative -> objective
- More information -> better understanding
- Gives Predictive Models

Needed

- Understanding of Control Engineering
 - Bode plots
 - Fourier Analysis

Basics of Frequency Domain Identification

David Abbink – Human Controller 10 |52

Measuring a Mass-Spring-Damper System $F = M \ddot{X} + B \dot{X} + K X$ Force position perturbation Μ

David Abbink – Human Controller 13 |52

David Abbink – Human Controller 14 |52

David Abbink – Human Controller 16 |52

David Abbink – Human Controller 17 |52

Frequency Domain Identification – applied to NMS control

David Abbink - Human Controller 18 |52

Measuring the Neuromuscular System

- 1. Impose Force Perturbation
- 2. Task Instruction
- 3. Measure Signals
 - Pedal Force
 - Pedal Displacement
 - Force Perturbation
- 4. Estimate Admittance

Measuring the Neuromuscular System

Admittance:

can be estimated as frequency response function

input force/torque output position/rotation

captures **causal** dynamic response of a human to interaction forces with the environment

Roughly resembles 2nd order system

Highly adaptive!

Measuring the Neuromuscular System

Measuring the Neuromuscular System (10 subjects)

The Role of the Neuromuscular System in visual / vestibular control loops

David Abbink - Human Controller 23 52

Neuromuscular System during Pitch Control

Neuromuscular System during Pitch Control

Interested in more information about measuring and modeling the NMS?

Follow: Human Movement Control A/B

Play around with:

NMČ Lab – a graphical user interface (GUI) to study the Delft Neuromuscular Model

Read:

-Schouten et al. (2008) -Mugge & Abbink et al. (2011) -Abbink et al. (2012)

The Cross-Over Model

Background & Theory

D. T. McRuer and H. R. Jex, "A review of quasilinear pilot models", IEEE Trans. Hum. Fact. 8, 231–249 (1967)

• Order of control denotes the number of integrations between the human's control movement and the output of the system being controlled.

• Highest derivative in the differential equation

Zero-order system

Also called position control – pure gain

David Abbink – Human Controller 29 |52

First-order system

• Also velocity control – integrator

Second - order system

David Abbink - Human Controller 31 52

Crossover Model (McRuer)

Humans can

adapt their control behaviour to steer position, velocity or acceleration (using prediction or memory), within limits:

$$K_{vis} \; \frac{1 + sT_{lead}}{1 + sT_{lag}} \; e^{-s\tau_{vis}}$$

Humans prefer

the closed-loop controlled system to behave like a "first-order system"

The adapted 'cross-over model': H_{driv}

$$_{\text{per}}H_{\text{car}}=-\frac{h}{h}$$

$$^{\omega \tau_{e}}$$
 (near ω_{c})

Once adapted to the dynamics, humans can

- increase gain (ω_c)
- decrease time delay

Thereby influencing the properties of the total closed-loop system

<u>__</u> e__

Cross-over Theory

Cross-over Theory

"open-loop function" Important for stability:

David Abbink – Human Controller 34 52

Cross-Over Model & Neuromuscular System

How do visual, vestibular and NMS feedback combine?

David Abbink – Human Controller 35 |52

McRuer's Lumped Neuromuscular System

The neuromuscular system is usually considered as a limitation, and can be seen as a controller-actuator system between u_{desired} and u_{realized}

The neuromuscular system can be modeled as a first or second-order low-pass filter: **Lumped neuromuscular system**. $H_{\text{lumped}} = \frac{\omega_{nm}^2}{\omega_{nm}^2 + 2\zeta_{nm}\omega_{nm}s + s^2}$

The lumped neuromuscular system *model parameters* can be obtained from the *identified* visual and vestibular frequency response functions.

The Lumped Neuromuscular System

Two forcing functions are needed to identify the contributions of the visual and vestibular systems separately:

- A forcing function provides a pitch attitude command signal on the PFD.
 - A second forcing function perturbs the elevator of the aircraft.

$$\frac{K_{vis}}{1+sT_{lag}} e^{-s\tau_{vis}} \qquad K_{vest} e^{-s\tau_{vest}} \qquad \frac{\omega_{nm}^2}{\omega_{nm}^2 + 2\zeta_{nm}\omega_{nm}s + s^2}$$

Visual and Vestibular Responses to perturbations

Cross-Over Model & Neuromuscular System

How do visual and NMS feedback contribute to carfollowing behaviour in case of haptic gas pedal feedback?

David Abbink – Human Controller 39 |52

Evaluation – Car Following with Haptic Driver Support System (DSS)

Goal: Experimentally Investigate impact of haptic DSS on car following AND neuromuscular control behaviour

Experimental Facilities

- Simplified Simulator (ME), capable of admittance measurements
- Realistic Fixed Base Driving 2. Simulator (AE) for checking

Subjects: 5 måle, 5 female subjects

- Experimental Conditions:
 V (drive with visual feedback)
 VH (drive with visual and haptic feedback)
 H (drive with haptic feedback only)

Task Instruction & Perturbation

Frequency [Hz]

Experimental results: classical metrics

Performance (std 1/TTC)IDSS increased performance

Effort (std Pedal Depression)

IDSS decreased effort

Experimental results: classical metrics (for THW=1, Bandwidth = 0.5)

Experimental results: frequency domain and time domain

identification results: Cybernetic Results

Control Effort (crossover freq)

TUDelft

Performance (phase margin)

David Abbink – Human Controller

45 |52

identification results: Cybernetic Results

Modeled Time delay decreases with haptic gas pedal feedback

More time available

But what is the cause?

Haptic Gas Pedal Evaluation – Exp.

Beneficial changes in Car-Following Behaviour:

Performance (deviations in Xrel, THW, Vrel, iTTC)

• Similar or slightly better

Control Effort (deviations in pedal position, muscle activity)

• Decrease

Driving with only haptic (H) feedback possible

How? Look at changes in Neuromuscular Control Behaviour Admittance Modeling

Next Class - 'Computerzaal B' (TBM)

Study Human Control Behaviour with MMS -Lab

- Group Enroll (available now)
- Download from BlackBoard (available tomorrow)

Do experiment

- Test several conditions on yourself
 - 1st order, 2nd order system, 3rd order system (normal)
 - 1st order, 2nd order system, 3rd order system (with predictor)
- Save each of the data files and two plots
 - (time-domain, frequency domain)
- Report in a short presentations
 - Report results in time domain and frequency domain
 - Discuss results in terms of McRuer Cross-over modelding

Horizontal System Respons

THISCOUL				
Ble Belp				
New Ope	n Save Save	As Run	Show Plots	
ieneral System For Experiment	ru snput Output			
Evaniment Name	New Experiment			
Subject Name	Anonymous			
	1. S.			
Tracking Task	Following, Pursuit	-		
System Dimension	Horizontal			
Current Run Number	ri 1			
	Average over Runs			
Input Device	Mouse	•		
Graphics Resolution (WxH)	640x480	-		
	Full Screen			
Time Settings		-		
Experiment Time (s)	30	F)		
Sampling Time (s)	20.46			
number of Samples	1024			
System Frequency (Hz) 50	-		
Graphics Frame Rate	(Hz) [25	-		

• Discuss inter- and intra-subject variability

48 52