The Human Controller
Frequency-Domain Analyses

- Neuromuscular control
- Control of limbs

- McRuer’s Cross-over model
- Control of systems
- Response of visual, vestibular and NMS

feedback to driving or flying

Teacher:
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. BioMechanical Engineering, Delft University of Technology, The Netherlands
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. About Perception
1. All seven senses: physiology
2. Measuring limits of perception
3. Sensory Integration & lllusions

2. About Cognition
1. The Brain: physiology
2. About feed-forward and feedback
3. Skill, Rule, Knowledge based Behaviour

3. About Action
1. The Neuromuscular System: Physiology, Adaptabilty

4. About Design and Evaluation
1. Metrics vs Models
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Learning Goals

After this class you will be able to:

Reproduce:
e McRuer's crossover model and parameter sensitivity

Apply:

e Frequency Domain Analysis to analyze Human Control
1. The basics: mass-spring-damper systems
2. FRFs and models of neuromuscular systems
3. FRFs and McRuer cross-over models

Critically Reflect on
= Applicability of frequency domain analyses
e Applicability of McRuer’s Crossover model
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Why bother Modeling?
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Measuring and Modeling Performance
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Coventional System Optimization

Measure the impact of a new system by

determining
e Statistical analysis (mean, std, CDF) of a dynamic signal
e Change in performance metric for different systems (tunings)

Shortcomings

= Time consuming

= Descriptive, but not predictive (hard to generalize)

= Many ways to achieve the same performance metric, unclear
what situations cause change in the metrics, or interaction
between them

new _
output signal (relative speed)

>
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Better way: use modeling!

Use System ldentification Techniques to determine
(causal and dynamic) relationships between input and
output

input output

output

System = input
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Cybernetic Modeling!

Cybernetics: describing a human in control engineering terms
. control gains, time delays, noise

lead car

speed
relative

speed

car
speed

gas pedal

Ref=0 action

—

>
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Cybernetic Modeling!

Advantages of this evaluation method:

e Quantitative -> objective
e More information -> better understanding
» Gives Predictive Models

Needed

« Understanding of Control Engineering
» Bode plots

* Fourier Analysis
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Basics of Frequency Domain ldentification
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Measuring a Mass-Spring-Damper System

F=MX  (newton’s law)

Force N
perturbation acceleration velocity position
UM [ — [ —
5 . .
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Measuring a Mass-Spring-Damper System

F=MX+BX+ KX

Force
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Measuring a Mass-Spring-Damper System
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Measuring a Mass-Spring-Damper System
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Measuring a Mass-Spring-Damper System
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Measuring a Mass-Spring-Damper System
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Measuring a Mass-Spring-Damper System
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Frequency Domain Identification — applied
to NMS control
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Measuring the Neuromuscular System

Impose Force Perturbation

2. Task Instruction

3. Measure Signals
*  Pedal Force
*  Pedal Displacement
e Force Perturbation

4. Estimate Admittance
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Admittance:

input force/torque
output position/rotation

Measuring the Neuromuscular System

can be estimated as frequency response function

captures causal dynamic response of a human to
Interaction forces with the environment

X/F‘/\I

frequency —

Roughly resembles 2nd
order system

Highly adaptive!

]
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FT: Force Task
RT: Relax Task
PT: Position Task
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Measuring the Neuromuscular System (10 subjects)

Gain [rad/Nm]

10




The Role of the Neuromuscular System
in visual / vestibular control loops
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Neuromuscular System during Pitch Control

Control Vehicle

Inceptor : Dxnamics

Displays Sensors Equalization

\ 4
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Neuromuscular System during Pitch Control

Stiff, like POS, from co-contraction or reflexive feedback
270
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Interested In more information about

measuring and modeling the NMS?

Follow:
Human Movement Control A/B

Play around with:
NMC Lab — a graphical user interface (GUI)
to study the Delft Neuromuscular Model

Read.:

-Schouten et al. (2008)
-Mugge & Abbink et al. (2011)
-Abbink et al. (2012)
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lead car
speed
lative
gas pedal car | re
speed t speed
—

Ret=0 action

>

The Cross-Over Model

Background & Theory

D. T. McRuer and H. R. Jex, “A review of quasi-
linear pilot models”, IEEE Trans. Hum. Fact. 8,
231-249 (1967)
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Order of Control

e Order of control denotes the number of
Integrations between the human’s control
movement and the output of the system
being controlled.

e Highest derivative in the differential
eguation
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Zero-order system

e Also called position control — pure aain

Position

Time
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First-order system

e Also velocity control — integrator

A input
|
Va ol
| 5 I |
X Position
Steering wheel o ¢ Heading
angle

Time
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Second - order system

e Also called acceleration control

Position
-
|/ |
T 5 *
| |
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®- Y
Steering wheel o 7 Heading o g Lateral -
angle paosition
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Crossover Model (McRuer)

Humans can adapt their control behaviour to steer
position, velocity or acceleration (using
prediction or memory), within limits:

Humans prefer the closed-loop controlled system to behave
like a “first-order system”
‘ ’ @ — joT
The adapted ‘cross-overmodel’: H H =—S¢ "¢ (nearw,)
driver =~ car ja)

Once adapted to the dynamics, humans can
Increase gain (w.)
decrease time delay

Thereby influencing the properties of the total closed-loop system
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Cross-over Theory

GAIN,¢

0
PHASE
LAG -180

a) .

The cross-over model: H, . H_ =—2¢"'  near o,
Jo

Properties of the Open-Loop system

Crossover Frequency e Measure of effort

Phase Margin @, Measure of stability (safety)
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Cross-over Theory lest

angle

**%'

GAIN, g
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LAG -180

Important for stability: “open-loop function”
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Cross-Over Model & Neuromuscular
System

How do visual, vestibular and NMS feedback
combine?
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McRuer’s Lumped Neuromuscular System

Displays Sensors Equalization Neuromuscular | Control Vehicle
System Inceptor Dynamics

urealized
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— 7N\ “\
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\ 4
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The neuromuscular system is usually considered as a limitation, and can be seen as a
controller-actuator system between Uyqgreg aNd U eqiized

The neuromuscular system can be modeled as a first or second-order low-pass filter:

Lumped neuromuscular system. w2
HIum = '
ped
w'rgl.m -+ 2<ﬂ-?nwnﬂ18 -+ 82

The lumped neuromuscular system model parameters can be obtained from
the /dentified visual and vestibular frequency response functions.
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The Lumped Neuromuscular System

Displays Sensors Equalization Neuromuscular | Control Vehicle
System Inceptor : D¥namics

ISR

4
—

Two forcing functions are needed to identify the contributions of the visual and
vestibular systems separately:

e A forcing function provides a pitch attitude command signal on the PFD.
e A second forcing function perturbs the elevator of the aircraft.

1 + Sri’ead UJ.Q.
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Visual and Vestibular Responses to perturbations
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Cross-Over Model & Neuromuscular
System

How do visual and NMS feedback contribute to car-
following behaviour in case of haptic gas pedal
feedback?
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Evaluation — Car Following with Haptic

Driver Support System (DSS)
Goal: Experimentally Investigate Ufﬁ / s J
impact of haptic DSS on car following VI h

AND neuromuscular control behaviour

Experimental Facilities
1. Simplified Simulator (ME),

capable of admittance measurements

2. Realistic Fixed Base Driving
Simulator (AE) for checking

Subjects:
5 male, 5 female subjects

Experimental Conditions:
* 'V (drive with visual feedback)
* VH (drive with visual and haptic feedback)
H (drive with haptic feedback only)
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Task Instruction & Perturbation
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Car-following experiment

Experimental results: classical metrics

Performance (std 1/TTC)
« IDSS increased performance

Effort (std Pedal Depression)
= IDSS decreased effort
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Car-following experiment

Experimental results: classical metrics (for THW=1, Bandwidth
= 0.5)

Performance Metrics (mean of 9@ Subjects)
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Car-following experiment

Experimental results: frequency domain and time domain
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Car-following experiment

identification results: Cybernetic Results

Control Effort (crossover freq) Performance (phase margin)
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Car-following experiment

identification results: Cybernetic Results

Modeled Time delay decreases with 175]  Disturbance
. bandwidth [Hz]
haptic gas pedal feedback o3
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But what is the cause?
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Haptic Gas Pedal Evaluation - Exp.

Beneficial changes in Car-Following Behaviour:
Performance (deviations in Xrel, THW, Vrel, iTTC)
 Similar or slightly better
Control Effort (deviations in pedal position, muscle activity)
e Decrease

Driving with only haptic (H) feedback possible

How? Look at changes in Neuromuscular Control Behaviour

Admittance
Modeling
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Next Class - ‘Computerzaal B’ (TBM)

Study Human Control Behaviour with MMS -
Lab

e Group Enroll (available now)

 Download from BlackBoard (available tomorrow)

Horizontal System Response

magnituds

Do experiment g \
= Test several conditions on yourself o I |
« 1%t order, 2" order system, 3 order system (normal)
« 1st order, 2" order system, 3" order system (with 1“;.@.“;”1 £ B2 .
predictor) e
. sbcrune  [leman
« Save each of the data files and two plots e
* (time-domain, frequency domain) e
» Report in a short presentations — : j
* Report results in time domain and frequency domain ... —
* Discuss results in terms of McRuer Cross-over -
- e =
modelding
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