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The Human Controller
Frequency-Domain Analyses

Teacher:
• David ABBINK
• BioMechanical Engineering, Delft University of Technology, The Netherlands

Simulation

- Neuromuscular control  
- Control of limbs

- McRuer’s Cross-over model
- Control of systems
- Response of visual, vestibular and NMS 

feedback to driving or flying
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So far… 

1. About Perception
1. All seven senses: physiology
2. Measuring limits of perception
3. Sensory Integration & Illusions

2. About Cognition
1. The Brain: physiology 
2. About feed-forward and feedback
3. Skill, Rule, Knowledge based Behaviour

3. About Action
1. The Neuromuscular System: Physiology, Adaptabilty

4. About Design and Evaluation
1. Metrics vs Models



3David Abbink – Human Controller |52

Learning Goals

After this class you will be able to:

Reproduce:
• McRuer’s crossover model and parameter sensitivity

Apply: 
• Frequency Domain Analysis to analyze Human Control

1. The basics: mass-spring-damper systems
2. FRFs and models of neuromuscular systems
3. FRFs and McRuer cross-over models

Critically Reflect on
• Applicability of frequency domain analyses
• Applicability of McRuer’s Crossover model



4David Abbink – Human Controller |52

Why bother Modeling? 
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Own Car Lead Car

Vcar

Xcar

Xlead

Vlead

Xrel = Xlead - Xcar
Vrel = Vlead - Vcar

THW = Xrel / Vcar
TTC  = Xrel / -Vrel

Separation
States

3. Cognition – route planning?Measuring and Modeling Performance
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Measure the impact of a new system by 
determining

• Statistical analysis (mean, std, CDF) of a dynamic signal
• Change in performance metric for different systems (tunings) 

Shortcomings 
• Time consuming
• Descriptive, but not predictive (hard to generalize)
• Many ways to achieve the same performance metric, unclear 

what situations cause change in the metrics, or interaction 
between them

System
output signal

System

new

3. Cognition – route planning?Coventional System Optimization

(relative speed)
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System
outputinput

Use System Identification Techniques to determine 
(causal and dynamic) relationships between input and 
output

System = 
output 
input 

Coventional System OptimizationBetter way: use modeling!
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Cybernetics: describing a human in control engineering terms
: control gains, time delays, noise

CarDriver

lead car
speed

gas pedal
action

car
speed

relative
speed

-

+Ref=0

Cybernetic Modeling!
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Advantages of this evaluation method:

• Quantitative -> objective
• More information -> better understanding
• Gives Predictive Models

Needed
• Understanding of Control Engineering

• Bode plots
• Fourier Analysis

Cybernetic Modeling!



10David Abbink – Human Controller |52

Basics of Frequency Domain Identification
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Simple Modeling of the 
Neuromuscular System

Measuring a Mass-Spring-Damper System

1/M
acceleration

∫
velocity

∫
position

Force 
perturbation

F = M X     (newton’s law)



12David Abbink – Human Controller |52

Simple Modeling of the 
Neuromuscular System

Measuring a Mass-Spring-Damper System

1/M
acceleration

∫
velocity

∫
position

Force 
perturbation

F = M X + B X + K X

B

K

-

+

+

B

K

M
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Simple Modeling of the 
Neuromuscular System

Measuring a Mass-Spring-Damper System

MBK
Force 

perturbation
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Simple Modeling of the 
Neuromuscular System

Measuring a Mass-Spring-Damper System
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Simple Modeling of the 
Neuromuscular System

Measuring a Mass-Spring-Damper System
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Simple Modeling of the 
Neuromuscular System

Measuring a Mass-Spring-Damper System
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Simple Modeling of the 
Neuromuscular System

Measuring a Mass-Spring-Damper System
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Frequency Domain Identification – applied 
to NMS control
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α

F

1. Impose Force Perturbation

2. Task Instruction

3. Measure Signals
• Pedal Force
• Pedal Displacement
• Force Perturbation

4. Estimate Admittance

Simple Modeling of the 
Neuromuscular System

Measuring the Neuromuscular System
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can be estimated as frequency response function
input force/torque 
output position/rotation

captures causal dynamic response of a human to 
interaction forces with the environment

K B

I
Roughly resembles 2nd

order system

Highly adaptive!

Admittance:

X/F

frequency

Measuring the Neuromuscular System
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FT: Force Task
RT: Relax Task
PT: Position Task

Measuring the Neuromuscular System
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Results for 10 subjects  

compliant

stiff

Measuring the Neuromuscular System (10 subjects)
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The Role of the Neuromuscular System 
in visual / vestibular control loops
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- -

Sensors Equalization Vehicle
Dynamics

Displays Neuromuscular
System

Control
Inceptor

+

-

--

-

Feed-
forward

Feed-
back

Neuromuscular System during Pitch Control
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Stiff, like POS, from co-contraction or reflexive feedback

Grip is very stiff

Compliant, like FOR

Reflexive feedback activity

Neuromuscular System during Pitch Control
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Interested in more information about
measuring and modeling the NMS?

Follow:
Human Movement Control A/B

Play around with:
NMC Lab – a graphical user interface (GUI) 
to study the Delft Neuromuscular Model

Read:
-Schouten et al. (2008)
-Mugge & Abbink et al. (2011) 
-Abbink et al. (2012)
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•The Cross-Over Model  
• Background & Theory

• D. T. McRuer and H. R. Jex, “A review of quasi-
linear pilot models”, IEEE Trans. Hum. Fact. 8, 
231–249 (1967)

CarDriver

lead car
speed

gas pedal
action

car
speed

relative
speed

-

+Ref=0
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Order of Control

• Order of control denotes the number of 
integrations between the human’s control 
movement and the output of the system 
being controlled.

• Highest derivative in the differential 
equation
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Zero-order system

• Also called position control – pure gain
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First-order system

• Also velocity control – integrator
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Second - order system

• Also called acceleration control
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Crossover Model (McRuer)

The adapted ‘cross-over model’:                                        (near ωc)

Once adapted to the dynamics, humans can 
• increase gain (ωc)
• decrease time delay

Thereby influencing the properties of the total closed-loop system

Humans can adapt their control behaviour to steer 
position, velocity or acceleration (using 
prediction or memory), within limits:

Humans prefer the closed-loop controlled system to behave
like a “first-order system”
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Cross-over Theory 

The cross-over model:                                     near ωc

Properties of the Open-Loop system
Crossover Frequency ωc Measure of effort
Phase Margin φm Measure of stability (safety)

ejc
driver carH H e

j
ωτω

ω
−=

-180

ωc

0

0

φm

10GAIN

PHASE
LAG



34David Abbink – Human Controller |52

PHASE
LAG -180

ωc

0

0

φm

10GAIN

Cross-over Theory

Hd Hc
Vrel

σ2Vrel =  1 + HdHc   σ2Vdist
1

Vdist
angle

Important for stability: “open-loop function”
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•Cross-Over Model & Neuromuscular
System  

How do visual, vestibular and NMS feedback   
combine?
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McRuer’s Lumped Neuromuscular System

- -

The neuromuscular system is usually considered as a limitation, and can be seen as a 
controller-actuator system between udesired and urealized

The neuromuscular system can be modeled as a first or second-order low-pass filter:
Lumped neuromuscular system.

Sensors Equalization Vehicle
Dynamics

Displays Neuromuscular
System

Control
Inceptor

+

udesired urealized

Hlumped = 

The lumped neuromuscular system model parameters can be obtained from 
the identified visual and vestibular frequency response functions.
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The Lumped Neuromuscular System

- -

Two forcing functions are needed to identify the contributions of the visual and 
vestibular systems separately:

Sensors Equalization Vehicle
Dynamics

Displays Neuromuscular
System

Control
Inceptor

+

• A second forcing function perturbs the elevator of the aircraft.
• A forcing function provides a pitch attitude command signal on the PFD.
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Visual and Vestibular Responses to perturbations
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•Cross-Over Model & Neuromuscular
System  

How do visual and NMS feedback contribute to car-
following behaviour in case of haptic gas pedal
feedback?
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Subjects:
5 male, 5 female subjects
Experimental Conditions:

• V (drive with visual feedback)
• VH (drive with visual and haptic feedback)
• H (drive with haptic feedback only)

Goal: Experimentally Investigate 
impact of haptic DSS on car following
AND neuromuscular control behaviour

Experimental Facilities
1. Simplified Simulator (ME), 

capable of admittance measurements

2. Realistic Fixed Base Driving 
Simulator (AE) for checking

Evaluation – Car Following with Haptic 
Driver Support System (DSS)
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Task Instruction
Maintain a constant THW of
0.5, 1 or 1.5 [s]
by using the gaspedal to
accelerate and decelerate

Perturbation: Lead vehicle Speed Profile
Unpredictable MultiSine

Each condition: 4 repetitions of 94 s

Task Instruction & Perturbation
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Car-following experiment
Experimental results: classical metrics

Performance (std 1/TTC)
• IDSS increased performance
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• IDSS decreased effort
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Car-following experiment  
Experimental results: classical metrics (for THW=1, Bandwidth 
= 0.5)
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Car-following experiment  
Experimental results: frequency domain and time domain
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Car-following experiment  
identification results: Cybernetic Results
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Car-following experiment  
identification results: Cybernetic Results

Modeled Time delay decreases with 
haptic gas pedal feedback

• More time available 

But what is the cause?
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Beneficial changes in Car-Following Behaviour:
Performance (deviations in Xrel, THW, Vrel, iTTC)

• Similar or slightly better
Control Effort (deviations in pedal position, muscle activity)

• Decrease

How? Look at changes in Neuromuscular Control Behaviour
Admittance
Modeling 

Driving with only haptic (H) feedback possible

Haptic Gas Pedal Evaluation – Exp.
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Study Human Control Behaviour with MMS -
Lab

• Group Enroll (available now)
• Download from BlackBoard (available tomorrow)

Do experiment
• Test several conditions on yourself

• 1st order, 2nd order system, 3rd order system (normal)
• 1st order, 2nd order system, 3rd order system (with 

predictor)
• Save each of the data files and two plots 

• (time-domain, frequency domain) 
• Report in a short presentations

• Report results in time domain and frequency domain
• Discuss results in terms of McRuer Cross-over 

modelding
• Discuss inter- and intra-subject variability

Next Class – ‘Computerzaal B’ (TBM) 
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