

CIE4801 Transportation and spatial modelling Congested assignment

Rob van Nes, Transport & Planning 31-08-18

Content

Comments/questions uncongested assignment

- Plus remaining part
- Modelling component 5: Assignment: congested conditions
 - Congested case
 - Your comments/questions on Chapter 10 and 11
 - Use of the assignment map
 - Practical issues

1.

Comments/questions last lecture

Comments/questions

Uncongested assignment

- Shortest path algorithm
- All-or-nothing
- Assignment map
- Probit and logit
- Remaining part
 - Link level versus route level

Switch from link level to route level

TUDelft

CIE4801: Congested assignment

Effect of sampling at link level versus route level

7

Stochastic assignment and path representation

- Iterative scheme as in Probit is tailor-made for tree search algorithms (or vice versa)
- Assignment map approach can be used as well, especially for Logit
 - Generate routes first,
 e.g. manually or using repetitive shortest path searches while systematically eliminating or penalizing links (k-shortest path algorithm)
 - Check whether routes are realistic (e.g. large or very short detours)
- Advantage of assignment map is that you can check for overlap!

Assignment map and stochastic assignment

2.

Congested assignment

Introduction congested assignment

Topics for discussion

- What does this modelling component do? What's its output and what's its input? How does it fit in the framework?
- The main concepts
 - Wardrop's equilibrium, speed-flow curves
- The modelling methods
 - Iterative scheme: Method successive averages (MSA)
 - Convergence criteria: Relative or Duality Gap
 - Mathematical programming approach
 - Frank-Wolfe algorithm versus MSA
 - Route based assignment
 - Stochastic equilibrium assignment (SUE)
 - NB Probit or Logit makes quite a difference!
 - Braess's paradox
- Practical issues
- Are these models appropriate?

3.0

Generic formulation of the network assignment problem

General network assignment problem: Main elements

Indices:

cologic finitiation ji route r link a

Network assignment variables (comment on changes)?

- T_{ii} OD travel demand
- α^{a}_{ijr} link-route incidence matrix (assignment map)
- $t_a(q_a)$ link travel time function
- $_{\Theta}$ flow dispersion parameter of the stochastic component

INPUT

- T_{ijr} route flow
- ϕ_{iir} route choice proportion
- *t_{ijr}* route travel time
- q_a link flow
- t_a link travel time

OUTPUT

Relationships between variables

1. Link travel times t_a

$$t_a = t_a(q_a)$$

2. Route choice proportions ϕ_{ijr}

$$\phi_{ijr} = \phi_{ijr}(\Theta, t_{ijr})$$

3. Route travel times t_{ijr}

$$t_{ijr} = \sum_{a} \alpha^{a}_{ijr} t_{a}$$

4. Route flows T_{ijr}

$$T_{ijr} = \phi_{ijr} T_{ij}$$

5. Link flows q_a

$$q_a = \sum_i \sum_j \sum_r \alpha^a_{ijr} T_{ijr}$$

Link performance functions

Traffic flow theory: Fundamental diagram

Assignment types

3.1

DUE: Deterministic user equilibrium assignment: main concept

Route choice with congestion effects

DUE assignment

1. Link travel times t_a

$$t_a = t_a(q_a)$$

2. Route choice proportions ϕ_{ijr}

$$\phi_{ijr} = \phi_{ijr}(t_{ijr})$$

3. Route travel times t_{ijr}

$$t_{ijr} = \sum_{a} \alpha^{a}_{ijr} t_{a}$$

4. Route flows T_{ijr}

$$T_{ijr} = \phi_{ijr} T_{ij}$$

5. Link flows q_a

$$q_a = \sum_i \sum_j \sum_r \alpha^a_{ijr} T_{ijr}$$

Main principle

Deterministic user-equilibrium (DUE) takes congestion effects into account and is defined as:

Wardrop's equilibrium law

All travellers choose their optimal route, such that no traveller can improve his/her travel time by unilaterally changing routes.

This equilibrium is reached if the following condition holds:

Wardrop's first principle

All used routes have the same travel time which is not greater than the travel time on any unused route.

Example DUE assignment

3.2

DUE: Algorithms: MSA

Key point assignment problem

General solution scheme:

- Start with an assumption on e.g. link costs
- Follow the arrows until convergence is achieved

Solution principle

- 1. Set flows of all links equal to 0
- 2. Determine link costs based on the link flows
 - In first iteration use free flow travel times
- 3. Perform an assignment (AON)
- 4. Determine link flows
- 5. Return to step 2

Different approaches for step 4

- Naive: Repeat again and again
- Simple: Average flows with previous results (1/n)
- Smart: Average with optimal step sizes

=> Don't => MSA => Frank-Wolfe

Illustration MSA algorithm

MSA: Example

Netw	ork		T =				$t_1(q_1) = \frac{1}{2}q_1^2 + 6$
Find DUE iteratively.							$t_2(q_2) = q_2 + 20$
q_1	q_2	t_1	t_2	w_1	w ₂	α	$q_a^{(i+1)} = q_a^{(i)} + \frac{1}{i} (w_a^{(i)} - q_a^{(i)})$
0	0	6	20	10	0	1	$ \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \frac{1}{1} \cdot \left[\begin{pmatrix} 10 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right] = \begin{pmatrix} 10 \\ 0 \end{pmatrix} $
10	0	56	20	0	10	1/2	$ \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \end{pmatrix} + \frac{1}{2} \cdot \left[\begin{pmatrix} 0 \\ 10 \end{pmatrix} - \begin{pmatrix} 10 \\ 0 \end{pmatrix} \right] = \begin{pmatrix} 5 \\ 5 \end{pmatrix} $
5	5	18.5	25	10	0	1/3	$ \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} + \frac{1}{3} \cdot \begin{bmatrix} 10 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 5 \end{bmatrix} = \begin{pmatrix} 6\frac{2}{3} \\ 3\frac{1}{2} \end{pmatrix} $
6.7	3.3	28.2	23.3	0	10	1/4	:
5	5	18.5	25	10	0	1/5	÷
6	4	24	24	-	-	-	

TUDelft

3.3

DUE: MSA and convergence

Convergence criteria

- Number of iterations
- Equality of path costs
- Successive link flows (FA): $(q^i q^{i-1})/q^{i-1} < d$

• Duality gap
$$\sum_{a} t_{a}^{i} \cdot q_{a}^{i} - \sum_{o} \sum_{d} T_{od} \cdot \tau_{od}^{i}$$

i.e. total travel time based on links minus total travel time based on (latest) shortest paths

3.4

DUE: Mathematical formulation

DUE assignment: Mathematical formulation

What is the objective function?

Mathematical programming formulation

$$\min_{q_a} \sum_a \int_{x=0}^{q_a} t_a(x) dx$$

subject to:

$$\sum_{r} T_{ijr} = T_{ij} \quad \forall i, j$$

$$q_a = \sum_{i} \sum_{j} \sum_{r} \alpha^a_{ijr} T_{ijr} \quad \forall a$$

$$T_{ijr} \ge 0 \quad \forall i, j, r$$

(flow conservation)

(definition)

(non negativity)

non-linear programming problem

Everything in time?

People do not only decide on travel times, but may also take other factors into account:

- fuel costs
- toll costs
- ... etc

How to take these factors into account?

3.5

DUE: Algorithm: Frank-Wolfe

Frank-Wolfe algorithm

A nonlinear programming problem can be solved using a *steepest descent algorithm*.

The *convex combinations algorithm*, also known as the *Frank-Wolfe algorithm* (1956), is a common (formal!) algorithm to solve the DUE assignment problem.

Main principle:

- Find an initial feasible solution
- Linearise the objective function
- Find a new intermediate solution
- Determine a new solution in the direction of the intermediate solution
- Iterate until the new solution does not change anymore

Frank-Wolfe algorithm 1/4

$$\min_{q_a} Z = \sum_{a} \int_{x=0}^{q_a} t_a(x) dx$$
 (1)

subject to:

$$\sum_{r} T_{ijr} = T_{ij} \quad \forall i, j \qquad (2)$$

$$q_{a} = \sum_{i} \sum_{j} \sum_{r} \alpha^{a}_{ijr} T_{ijr} \quad \forall a \qquad (3)$$

$$T_{ijr} \ge 0 \quad \forall i, j, r \qquad (4)$$

Step 1: Find an initial feasible solution (iteration 1)

We have to find a solution that satisfies constraints (2), (3), and (4).

An AON assignment yields a feasible solution $q^{(1)}$

Frank-Wolfe algorithm 2/4

$$\min_{q_a} Z = \sum_{a} \int_{x=0}^{q_a} t_a(x) dx$$
 (1)

subject to:

$$\sum_{r} T_{ijr} = T_{ij} \quad \forall i, j \qquad (2)$$

$$q_{a} = \sum_{i} \sum_{j} \sum_{r} \alpha^{a}_{ijr} T_{ijr} \quad \forall a \qquad (3)$$

$$T_{ijr} \ge 0 \quad \forall i, j, r \qquad (4)$$

Step 2: Linearise the objective function (iteration *i*)

$$\tilde{Z}(w^{(i)}) = Z(q^{(i)}) + \sum_{a} \frac{\partial Z(q^{(i)})}{\partial q_{a}} (w_{a} - q_{a}^{(i)})$$
$$= Z(q^{(i)}) + \sum_{a} t_{a} (q_{a}^{(i)}) (w_{a} - q_{a}^{(i)})$$

(first-order expansion Taylor polynomial)

Frank-Wolfe algorithm 3/4

$$\min_{q_a} Z = \sum_{a} \int_{x=0}^{q_a} t_a(x) dx$$
 (1)

subject to:

$$\sum_{r} T_{ijr} = T_{ij} \quad \forall i, j \qquad (2)$$

$$q_{a} = \sum_{i} \sum_{j} \sum_{r} \alpha^{a}_{ijr} T_{ijr} \quad \forall a \qquad (3)$$

$$T_{ijr} \ge 0 \quad \forall i, j, r \qquad (4)$$

Step 3: Solve the linearised problem (iteration *i*)

$$\min_{w_a^{(i)}} \tilde{Z}(w^{(i)}) = \min_{w_a^{(i)}} \left\{ Z(q^{(i)}) + \sum_a t_a(q_a^{(i)})(w_a - q_a^{(i)}) \right\}$$
assignment using $t_a(q_a^{(i)})$
feasible solution w_a

$$\min_{w_a^{(i)}} \sum_a t_a(q_a^{(i)}) w_a^{(i)}$$
subject to (2), (3), and (4)

An AON

yields a

Frank-Wolfe algorithm 4/4

$$\min_{q_a} Z = \sum_{a} \int_{x=0}^{q_a} t_a(x) dx$$
 (1)

subject to: $\sum_{r} T_{ijr} = T_{ij} \quad \forall i, j$ $q_{a} = \sum_{i} \sum_{j} \sum_{r} \alpha^{a}_{ijr} T_{ijr} \quad \forall a$ $T_{ijr} \ge 0 \quad \forall i, j, r$

$$\tilde{\alpha}^{(i)} = \underset{0 \le \alpha \le 1}{\arg\min} Z(q^{(i)} + \alpha(w^{(i)} - q^{(i)})) \quad \alpha = \text{optimal stepsize}$$

$$\Rightarrow q^{(i+1)} = q^{(i)} + \tilde{\alpha}^{(i)} (w^{(i)} - q^{(i)})$$

(2)

(3)

(4)

Frank-Wolfe algorithm

Step 1: *i*:=1. Set $q_a^{(i)} = 0$ (assume empty network) Step 2: Perform a shortest-path AON assignment based on $t_a^{(i)} = t_a(q_a^{(i)})$ yielding link flows $w_a^{(i)}$ Step 3: Compute new solution $q_a^{(i+1)} = q_a^{(i)} + \alpha^{(i)}(w_a^{(i)} - q_a^{(i)})$ with $\tilde{\alpha}^{(i)} = \arg \min Z(q^{(i)} + \alpha(w^{(i)} - q^{(i)}))$

Step 4: If no convergence yet, set i = i+1 and return to Step 2.

N.B. Using $\alpha^{(i)} = 1/i$ is called: Method of Successive Averages (MSA) (see earlier slides)

3.6

DUE: Route based approach

Link based versus route based

- Previous slides all referred to a link based formulation
- i.e. repetitive tree searches
- What if you have a set of possible routes?
- Then there's no need to search for routes at each MSA-step!

Route based approach: Generic procedure

Generic solution scheme Route flow averaging

- 1. Specify routes/choice sets
- 2. Calculate path costs
- 3. Assign OD (AON)=> route flows
- 4. Recalculate route flows (MSA)

$$q_r^{i} = q_r^{i-1} + (w_r^{i} - q_r^{i-1}) / i$$

where w_r^i = route flow of the intermediate solution

- 5. Calculate link flows
- 6. Check convergence
- 7. Go to step 2 or stop

Benefits of a route-based approach

- Full control of routes that are used
- Freedom in route choice modelling (see SUE)
- Overlapping routes can explicitly be dealt with
- Reduced computational efforts in equilibrium assignment
- Suitable for all kind of network concepts e.g. multimodal networks
- So, why isn't route-based assignment used in practice?

3.7

SUE: Stochastic user equilibrium assignment

Stochastic user equilibrium

Combination of two concepts

- Congestion: travel time is function of flow
 => equilibrium modelling
- Perception: travellers consider a set of routes
 => route choice
- Adjustment Wardrop All travellers choose their optimal route, such that no traveller can improve his/her perceived travel time by unilaterally changing routes.

Stochastic equilibrium assignment

1. Link travel times t_a

$$t_a = t_a(q_a)$$

2. Route choice proportions ϕ_{ijr}

$$\phi_{ijr} = \phi_{ijr}(\Theta, t_{ijr})$$

3. Route travel times t_{ijr}

$$t_{ijr} = \sum_{a} \alpha^{a}_{ijr} t_{a}$$

4. Route flows T_{ijr}

$$T_{ijr} = \phi_{ijr} T_{ij}$$

5. Link flows q_a

$$q_a = \sum_i \sum_j \sum_r \alpha^a_{ijr} T_{ijr}$$

Generic solution scheme Route flow averaging

- 1. Specify paths/choice sets
- 2. Calculate path costs
- 3. Assign OD (Logit, Probit)=> route flows
- 4. Recalculate route flows (MSA)

$$q_r^{i} = q_r^{i-1} + (w_r^{i} - q_r^{i-1}) / i$$

where w_r^i = route flow of the intermediate solution

- 5. Calculate link flows
- 6. Check convergence
- 7. Go to step 2 or stop

Alternative solution scheme Link flow averaging

- 1. Specify paths/choice sets
- 2. Calculate path costs
- 3. Assign OD (Probit, Logit)=> route flows
- 4. Calculate link flows
- 5. Recalculate link flows (MSA)

$$q_a^{i} = q_a^{i-1} + (w_a^{i} - q_a^{i-1}) / i$$

where w_a^{i} = link flow of the intermediate solution

- 6. Check convergence
- 7. Go to step 2 or stop

Assignment map: LFA

3.8

Braess's paradox

CIE4801: Congested assignment

56

Braess's paradox

• What happens with the total travel time if link 3 is open for traffic?

- Explore spreadsheet Braess (on Blackboard)
- Check internet, e.g. YouTube!

4.

Practical issues

Practical topics

Trucks

- Convergence speed DUE and SUE
- Duality gap SUE
- Frank-Wolfe or MSA?
- Values for parameters in BPR
- Where's the congestion?

Three options

- Sum the OD-matrices of car and truck into OD-matrix vehicles or using a PCU-value
- Assign trucks before performing equilibrium assignment, e.g. using multiple routing, and use the flows as a preload (PCU!)
- Assign trucks and cars simultaneously (again using a PCU-value), i.e. multi-user class assignment

Convergence speed DUE and SUE

- In an equilibrium assignment you distribute traffic over a set of routes
- In a DUE you have a single route per MSA-step, in a SUE you have multiple routes per MSA-step
 => SUE needs less MSA-steps
- However, if you use a Probit for SUE, you need iterations for a single MSA-step
 - => SUE with Probit takes more computation time
 - => SUE with Logit is faster than DUE

Duality gap SUE

- Duality gap in words: total travel time based on links minus total travel time based on (latest) shortest paths
- For DUE the duality gap should become zero (Wardrop principle)
- In a SUE travellers opt routes that are longer but they perceive to be shortest
 - => Total travel time for SUE is higher than for DUE
 - => Duality gap > 0

Frank-Wolfe or MSA

• Frank-Wolfe algorithm is a generic mathematical tool

- Theoretically it is only justified if the travel time on a link is a function of the flow on the link
 => so what about intersections?
- MSA is a pragmatic approach, which proves to be rather robust

Values for parameters in BPR

• BPR-function:
$$t_a(q_a) = t_a^0 \left(1 + \alpha \left(\frac{q_a}{C_a} \right)^{\beta} \right)$$

- Commonly mentioned values: $\alpha = 0.15$ and $\beta = 4$
- However, function differs per road type:
 e.g. 0.15 is used for freeways, for regional and urban roads higher values are more suitable

Where's the congestion?

- Net result of assignment: network with flows
- Common unit for analysis: flow-capacity (q/c) ratio
- For which *q*/*c*-ratio there is congestion?
- Practice:
 q/c-ratio > 0.85: congestion
 - (N.B. q represents average flow, thus q/c=1 implies 50% congestion)
- Where's the queue?

