

CIE4801 Transportation and spatial modelling Assignment: special topics System optimal and Public transport

Rob van Nes, Transport & Planning 31-08-18

C

Content

- Comments/questions congested assignment
 - Spreadsheet Braess
- Modelling component 5: Assignment: Special topics
 - Your comments/questions on Chapter 10 and 11
 - Social equilibrium or system optimum (11.2.2)
 - Public transport assignment (10.6)
 - Choice modelling and public transport assignment (e.g. Omnitrans approach)

1.

Comments/questions congested assignment

Spreadsheet Braess

- What did you see?
- Adding link 3 can result in higher travel times!
- What happens in case of a substantially lower or higher demand?
- What is the difference between using DUE and SUE assignment?

Difference between DUE and SUE (demand = 1000)

Comments/questions

• The main concepts

- Wardrop's equilibrium, speed-flow curves
- The modelling methods
 - Iterative scheme: Method successive averages (MSA)
 - Convergence criteria: Relative or Duality Gap
 - Mathematical programming approach
 - Frank-Wolfe algorithm versus MSA
 - Route based assignment
 - Stochastic equilibrium assignment (SUE)
 - Route based algorithm
 - DUE versus SUE

1.2

Comments/questions congested assignment: DUE versus SUE

Solution principle DUE

- 1. Set flows of all links equal to 0
- 2. Determine link costs based on the link flows
 - In first iteration use free flow travel times
- 3. Perform an assignment (AON)
- 4. Determine link flows
- 5. Return to step 2

Apply either route flow or link flow averaging

Solution principle SUE

- 1. Set flows of all links equal to 0
- 2. Determine link costs based on the link flows
 - In first iteration use free flow travel times
- 3. Perform an assignment (Probit or Logit)
- 4. Determine link flows
- 5. Return to step 2

Apply either route flow or link flow averaging

9

- Stochastic assignment already spreads traffic over routes in a single DUE-iteration => a potential benefit
- Probit implies more AON assignments within a single DUEiteration => longer computation times
- Logit requires a route based approach (having an additional benefit!), however there's the theoretical drawback: overlap

Duality gap SUE

- Duality gap in words: total travel time based on links minus total travel time based on (latest) shortest paths
- For DUE the duality gap should become zero (Wardrop principle)
- In a SUE travellers opt routes that are longer but they perceive to be shortest
 - => Total travel time for SUE is higher than for DUE
 - => Duality gap > 0

2.

Social equilibrium or System optimum

Assignment: optimisation of objectives

• Objective AON
$$\min_{q_a} Z = \sum_a t_a q_a$$

- Objective DUE $\min_{q_a} \sum_{a} \int_{x=0}^{q_a} t_a(x) dx$
- Similarity or difference?
- Both minimise the surface under function *t_a*, but.....
- AON: additional traveller doesn't affect other travellers' travel times DUE: additional traveller affects travel time of all travellers

DSO assignment

Deterministic user-equilibrium (DUE):

Assignment in which each traveller minimises his/her own travel time

Deterministic system optimum (DSO):

Assignment in which the total travel time for all travellers is minimised

Analogy with Game Theory: "Prisoners' dilemma"

Individuals X and Y committed a crime They are in jail and are asked individually to confess

Depending on the confession of both X and Y, they face a prison time

		Nash-equilibrium	Y			
	(# years in prison)		confess	don't confess		
Decision rule: Confessing yields the best result independent of the response of the other	X	confess	5, 5	0, 20		
		don't confess	20,0	1 , 1		
		Better off if coo	Pareto-optimum			
T UDelft		CIE4801: System optimal, Public transport 14				

Example DSO assignment

DUE assignment

DSO assignment

$$q_1 = 6, t_1 = 24$$

$$q_2 = 4, \ t_2 = 24$$

total travel time: 240

$$q_1 = 4.14, \ t_1 = 14.57$$

 $q_2 = 5.86, \ t_2 = 25.86$

total travel time: 211.8

DSO assignment: mathematical formulation

DUE

DSO

 $\min_{q_a} Z_1 = \sum_a \int_{x=0}^{q_a} t_a(x) dx$

$$\min_{q_a} Z_2 = \sum_a t_a(q_a) \cdot q_a$$

subject to:

$$\sum_{r} T_{ijr} = T_{ij} \quad \forall i, j$$

$$q_{a} = \sum_{i} \sum_{j} \sum_{r} \alpha^{a}_{ijr} T_{ijr} \quad \forall a$$

$$T_{ijr} \ge 0 \quad \forall i, j, r$$

How to solve for a DSO assignment?

Trick: We can use the same algorithm for solving for a DUE assignment by *replacing the travel time function!*

$$\begin{split} \min_{q_a} \sum_a t_a(q_a) \cdot q_a & \Rightarrow \quad \min_{q_a} \sum_a \int_{x=0}^{q_a} t_a^*(x) dx \\ \text{What should we choose for } t_a^*(q_a) ? \\ f(x) &= \int f'(x) dx \\ f(x) &\to t_a(q_a) \cdot q_a \\ f'(x) &\to \frac{d}{dq_a} (t_a(q_a) \cdot q_a) = t_a(q_a) \cdot \frac{dq_a}{dq_a} + \frac{dt_a(q_a)}{dq_a} \cdot q_a \\ &= t_a(q_a) + t'_a(q_a) \cdot q_a \equiv t_a^*(q_a) \\ \end{split}$$

DSO assignment

Marginal link cost = total extra cost of one extra vehicle on the link (when there are already q_a vehicles)

Marginal link cost concept

DSO assignment: Example

Suppose the link travel times are described by the BPR function: $\lceil \rho \rceil$

$$t_a(q_a) = t_a^0 \left[1 + \alpha \left(\frac{q_a}{C_a} \right)^{\beta} \right]$$

Which link travel time function should be used such that we can solve for a DSO assignment by using a DUE algorithm (such as Frank-Wolfe) ?

$$t_{a}(q_{a}) + t'_{a}(q_{a}) \cdot q_{a} = t_{a}^{0} \left[1 + \alpha \left(\frac{q_{a}}{C_{a}} \right)^{\beta} \right] + t_{a}^{0} \frac{\alpha \beta}{C_{a}^{\beta}} (q_{a})^{\beta-1} \cdot q_{a}$$
$$= t_{a}^{0} \left[1 + \alpha (1 + \beta) \left(\frac{q_{a}}{C_{a}} \right)^{\beta} \right]$$

DSO assignment in practice?

How to reach a system optimal assignment in practice? road pricing ('rekeningrijden', 'kilometerheffing')

How much should the road pricing toll be on each link?

$$t_a^*(q_a) \equiv t_a(q_a) + \underbrace{t'_a(q_a) \cdot q_a}_{\approx \text{ link toll}}$$

N.B. Remember VoT!

3.

Public transport assignment

Topics for discussion

• Main differences between public transport and private modes

- Generalised costs, common lines, frequency versus schedule based
- Do you understand the network representation?
 - Trunk line
 - Line specific
 - Route sections
- Do you understand the assignment methods?
 - Strategy concept
 - Choice modelling approach
- Are these models appropriate?

3.1

Public transport assignment: Difference between car and public transport assignment

Differences between car & PT assignment

- Network itself
- Congestion effects
- Route travel costs

Network itself

- Car: Physical infrastructure network
- PT: Network of services Space accessibility

 - Stops/stations Acc
 - Lines

Time accessibility

- Frequencies
- Operating hours
 Public transport modes

Fares

Access and egress links (network) In-vehicle links and transfers

Waiting time (first stop, transfer) Mode specific constant

Modal preferences Value of time, fare systems

Link travel times

Car:
$$t_a = t_a(q_a)$$

PT:
$$t_a = t_a^0$$

Bus travel times? Function Crowding?

Function of car travel times?

Route travel costs

Car:
$$c_{ijr} = \sum_{a} \alpha^{a}_{ijr} c_{a}$$
 ($c_{a} = t_{a}$)
Additive costs

PT:
$$c_{ijr} = \dots$$

$$\begin{array}{c}
2.2 & 1.5 & 1.0 & 1.1\\
c_{ijr} = \gamma_1 t_{ijr}^{\text{access}} + \gamma_2 t_{ijr}^{\text{waiting}} + \gamma_3 t_{ijr}^{\text{in-vehicle}} + \gamma_4 t_{ijr}^{\text{egress}} + \\
+ \gamma_5 t_{ijr}^{\text{walking_int}} + \gamma_6 t_{ijr}^{\text{waiting_int}} + \gamma_7 N \\
2.3 & 1.3 & 5.7\end{array}$$

Non-additive costs (?)

Consequences for assignment?

Non-additive costs would mean that a route based approach using route set generation (e.g. enumeration) is necessary.

Once the routes have been generated, the route costs can be computed.

How can *frequencies*, *waiting times*, and *PT costs* be determined for specific routes?

Examples waiting times and costs

What is the waiting time at the transfer node?

- based on frequency of the yellow train:
- assuming the lines are synchronized:
- assuming the time schedules are known: ...

How much are the PT costs? Depends on:

- zone based, distance based, boarding penalty
- single trip or round trip
- combined ticket
- discount pass

Delft

- timing of the trip

 $\tau^{\text{waiting}} \approx 7.5 \text{ min.}$ $\tau^{\text{waiting}} \approx 0.0 \text{ min.}$

3.2

Public transport assignment: Modelling approaches

Criteria for modelling approach

- Network
 - complexity and size
- Algorithm
 - complexity
- Level of detail of results
 - modal split
 - average or maximum line occupancies
 - impact of ITS
- Time dimension
 - long term
 - short term

Algorithms

- Shortest path
- Multi-routing (i.e. between pairs of stops only)
- Multiple routing (between origin and destination)
 - Feasible strategy
 - Enumeration of route sets and choice modelling

Representations & algorithms

Representations

- Line based
 - Trunk lines
 - Line specific
- Route sections

Algorithms

- (Floyd-Warshall)
- Strategies
- Choice modelling

3.3

Public transport assignment: Network representations

Example with 2 transit lines

Trunk line links

Line specific network

Route Sections

3.4

Public transport assignment: Algorithms

Floyd-Warschall (1/2)

6

Floyd-Warschall (2/2)

For
$$i = 1, N$$

for $j = 1, N$
for $k=1, N$
 $If Z_{ikj}=Z_{ik}+P_t+Z_{kj}
 $Z_{ij}=Z_{ikj}$, back node (Z_{ij}) = back node $(Z_{kj})$$

Strategies: network example (Spiess & Florian, 1989)

Strategies: extended network

Strategies: reduced version

CIE4801: System optimal, Public transport 49

Strategies step 2: Forward assignment

3.5

Public transport assignment: Choice modelling approach

Omnitrans: Route search

- Determine alighting stop(s) at destination (maximum access distance)
- Determine boarding stop(s) at origin (maximum access distance)
- Start at destination, for each alighting stop
- Determine boarding stops without transfer
 - Determine stops that can be reached with one transfer
 - Determine stops that can be reached with two transfers
 - Determine stops that can be reached with N_{max} transfers
 - Check logic of routes (detour)

•

Omnitrans: Sequential choices

Basic function for line choice

$$P_{i,s} = \frac{F_i \cdot e^{\beta_l \cdot GC_{i,s}}}{\sum_{j \in L_s} F_j \cdot e^{\beta_l \cdot GC_{j,s}}}$$

This models every vehicle as a separate alternative and groups them per line

- $P_{i,s}$ = probability boarding line *i* at stop *s*
- F_i = frequency of line *i*
- β_l = scale parameter line choice
- GC_i = generalised costs from stop *s* to destination, excluding waiting time (negative!)
- L_s = set of line at stop *s* to travel to the destination

This function can also be applied for line choice at transfer nodes (different scale parameter is possible)

Basic function for stop choice

$$\begin{split} F_{s} &= \sum_{j \in L_{s}} F_{l} \cdot \frac{e^{\beta_{l} \cdot GC_{j,s}}}{\max_{k \in L_{s}} e^{\beta_{l} \cdot GC_{k,s}}} \\ GC_{s} &= \theta_{a} \cdot ta_{s} + \theta_{w} \cdot f_{w} \cdot \frac{1}{F_{s}} + \sum_{j \in L_{s}} P_{j,s} \cdot GC_{j,s} \\ P_{s} &= \frac{e^{\beta_{bs} \cdot GC_{s}}}{\sum_{j \in S} e^{\beta_{bs} \cdot GC_{j}}} \\ F_{s} &= \text{aggregate frequency at stop } s \\ GC_{s} &= \text{utility for boarding at stop } s \\ ta_{s} &= \text{access time at stop } s \\ f_{w} &= \text{factor waiting time} \\ P_{s} &= P_{s} = \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{j}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s} \cdot GC_{s}} \\ F_{s} &= \frac{1}{2} \sum_{j \in S} e^{\beta_{s}$$

The frequency of the most attractive line is accounted for in full, frequencies of less attractive lines are reduced

Note that the in-vehicle time is based on a weighted average and not on a logsum

This function can also be applied for choice of transfer nodes using walk links

 β_{bs} = scale parameter for boarding stop choice

Delft

Impact on ridership metro and bus (example RET Bus Barcelona)

MSc Thesis Bernat Goñi

Capacity and (un)reliability

- Higher subjective in-vehicle time ('BPR')
- Operational frequency
- Perceived frequency
- Full vehicles

Run based (=> dynamic assignment)

TUDelft

CIE4801: System optimal, Public transport 59

3.6

Case: Modelling PT in Barcelona with Omnitrans

Case: RET-Bus network Barcelona

MSc Thesis Bernat Goñi

Existing PT network

How to model the RET-Bus system?

Input

- OD matrices car, bus and metro (based on surveys)
- Networks car and PT
- Mode choice
 - Car and PT or Car, metro and bus?
- Assignment

Delft

$$V_{PT} = \sum_{n} \left[\left(2.0 \cdot t_a + 2.5 \cdot t_w + t_v + BP_m \right) \cdot VoT \right] + \sum_{n-1} \left(TP_m \cdot VoT \right) + 2.0 \cdot t_e \cdot VoT + Fare$$

- Difference metro and bus: boarding penalty and transfer penalty
- Philosophy: metro is preferred over bus, metro stations are more fuzz => what's the net effect?
- RET-bus is either bus, metro or in between

Validation PT assignment

	Model 1	Model 2	Model 3	Model 4	
Parameter ø	3,0	2,0	3,0	2,0	
Parameter BP _{bus}	10,0	10,0	7,0	7,0	
Parameter BPmetro	5,0	5,0	5,0	5,0	
Parameter TP _{bus}	5,0	5,0	3,0	3,0	
Parameter TPmetro	0,0	0,0	0,0	0,0	
Difference in bus trip legs 2007 (predicted-observed) (%)	-20,2	-15,0	+16,5	+23,0	
Difference in metro trip legs 2007 (predicted-observed) (%)	+50,0	+48,0	+26,9	+25,2	

NB: Data is in trips per mode, Omnitrans computes legs per mode!

Impact on mode choice

Figure 5-7: Zones that produce more than +1,50% additional transit trips in Alternative 1 (TMB plan) compared with the base case in 2016 (in orange). The metro and BRT networks are shown in red and blue, respectively.

Impact on ridership metro and bus

