Dredging Processes

Dr.ir. Sape A. Miedema

3. Cutting Introduction

Dredging A Way Of Life

Delft University of Technology – Offshore & Dredging Engineering

Offshore A Way Of Life

Delft University of Technology – Offshore & Dredging Engineering

Offshore & Dredging Engineering

Dr.ir. Sape A. Miedema Educational Director

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

Mohr Circle

Mohr Circle 1

Vertical Equilibrium of Forces $\sigma_{v} \cdot \cos(\alpha) = \sigma \cdot \cos(\alpha) + \tau \cdot \sin(\alpha)$ Horizontal Equilibrium of Forces $\sigma_{h} \cdot \sin(\alpha) = \sigma \cdot \sin(\alpha) - \tau \cdot \cos(\alpha)$ Faculty of 3mE - Dredging Engineering

Delft

Delft University of Technology Offshore & Dredging Engineering

$$\sigma_{v} \cdot \cos(\alpha) \cdot \cos(\alpha) = \sigma \cdot \cos(\alpha) \cdot \cos(\alpha) + \tau \cdot \sin(\alpha) \cdot \cos(\alpha)$$

$$\sigma_{\mathbf{h}} \cdot \sin(\alpha) \cdot \sin(\alpha) = \sigma \cdot \sin(\alpha) \cdot \sin(\alpha) - \tau \cdot \cos(\alpha) \cdot \sin(\alpha)$$

$$\sigma_{\rm v} \cdot \cos^2(\alpha) + \sigma_{\rm h} \cdot \sin^2(\alpha) = \sigma$$

$$\cos^{2}(\alpha) = \frac{1 + \cos(2 \cdot \alpha)}{2}$$
 $\sin^{2}(\alpha) = \frac{1 - \cos(2 \cdot \alpha)}{2}$

$$\sigma = \left(\frac{\sigma_{v} + \sigma_{h}}{2}\right) + \left(\frac{\sigma_{v} - \sigma_{h}}{2}\right) \cdot \cos\left(2 \cdot \alpha\right)$$

Mohr Circle 3

$$\sigma_{v} \cdot \cos(\alpha) \cdot \sin(\alpha) = \sigma \cdot \cos(\alpha) \cdot \sin(\alpha) + \tau \cdot \sin(\alpha) \cdot \sin(\alpha)$$

$$-\sigma_{\rm h} \cdot \sin(\alpha) \cdot \cos(\alpha) = -\sigma \cdot \sin(\alpha) \cdot \cos(\alpha) + \tau \cdot \cos(\alpha) \cdot \cos(\alpha)$$

$$(\sigma_{v} - \sigma_{h}) \cdot \sin(\alpha) \cdot \cos(\alpha) = \tau$$

$$\tau = \left(\frac{\sigma_{\rm v} - \sigma_{\rm h}}{2}\right) \cdot \sin\left(2 \cdot \alpha\right)$$

Mohr Circle 4

$$\sigma - \left(\frac{\sigma_{v} + \sigma_{h}}{2}\right) = \left(\frac{\sigma_{v} - \sigma_{h}}{2}\right) \cdot \cos\left(2 \cdot \alpha\right)$$

$$\tau = \left(\frac{\sigma_{v} - \sigma_{h}}{2}\right) \cdot \sin\left(2 \cdot \alpha\right)$$

$$\left(\sigma - \left(\frac{\sigma_{v} + \sigma_{h}}{2}\right)\right)^{2} = \left(\frac{\sigma_{v} - \sigma_{h}}{2}\right)^{2} \cdot \cos^{2}\left(2 \cdot \alpha\right)$$

$$\tau^{2} = \left(\frac{\sigma_{v} - \sigma_{h}}{2}\right)^{2} \cdot \sin^{2}\left(2 \cdot \alpha\right)$$

$$\left(\sigma - \left(\frac{\sigma_v + \sigma_h}{2}\right)\right)^2 + \tau^2 = \left(\frac{\sigma_v - \sigma_h}{2}\right)^2$$

Mohr Circle 5

f+

Delft University of Technology Offshore & Dredging Engineering

Mohr Circle From Triaxial Tests

Mohr Circle With Cohesion

Mohr Circle From Triaxial Tests

Active Soil Failure

Faculty of 3mE - Dredging Engineering

FUDDEIft Delft University of Technology Offshore & Dredging Engineering

el

Delft University of Technology Offshore & Dredging Engineering

Active Soil Failure 1

$$\mathbf{G} = \frac{1}{2} \cdot \boldsymbol{\rho}_{\mathrm{g}} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \cot\left(\boldsymbol{\beta}\right)$$

 $\mathbf{S} = \mathbf{N} \cdot \mathbf{tan}(\boldsymbol{\varphi})$

No cohesion \Rightarrow c=0No adhesion \Rightarrow a=0

Smooth wall $\Rightarrow \delta=0$

Horizontal \Rightarrow F + S · cos(β) - N · sin(β) = 0 Vertical \Rightarrow G - N · cos(β) - S · sin(β) = 0

Active Soil Failure 3

$$\mathbf{F} = -\mathbf{G} \cdot \tan\left(\varphi - \beta\right)$$
$$\mathbf{G} = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \cot\left(\beta\right)$$

$$\mathbf{F} = -\frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \frac{\cos(\beta) \cdot \sin(\varphi - \beta)}{\sin(\beta) \cdot \cos(\varphi - \beta)}$$

F at maximum if: $\frac{dF}{d\beta} = 0$

$$\mathbf{F} = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \left(1 - \frac{\sin(\varphi)}{\sin(\beta) \cdot \cos(\varphi - \beta)}\right)$$

 $f = sin(\beta) \cdot cos(\beta - \phi) \implies F$ maximum if f maximum

Faculty of 3mE - Dredging Engineering

 $\frac{d^2F}{d\beta^2} < 0$

Delft University of Technology Offshore & Dredging Engineering

$$-\frac{\cos(\beta)\cdot\sin(\varphi-\beta)}{\sin(\beta)\cdot\cos(\varphi-\beta)}=$$

$$-\frac{\cos(\beta)\cdot\sin(\varphi-\beta)}{\sin(\beta)\cdot\cos(\varphi-\beta)}-1+1=$$

$$\frac{\cos(\beta) \cdot \sin(\varphi - \beta)}{\sin(\beta) \cdot \cos(\varphi - \beta)} - \frac{\sin(\beta) \cdot \cos(\varphi - \beta)}{\sin(\beta) \cdot \cos(\varphi - \beta)} + 1 =$$

$$-\frac{\sin(\varphi)}{\sin(\beta)\cdot\cos(\varphi-\beta)}$$

1

Active Soil Failure 4

$$\frac{\mathrm{d}f}{\mathrm{d}\beta} = \cos\left(2\cdot\beta - \varphi\right)$$
$$\frac{\mathrm{d}^{2}f}{\mathrm{d}\beta^{2}} = -2\cdot\sin\left(2\cdot\beta - \varphi\right)$$
$$\frac{\mathrm{d}f}{\mathrm{d}\beta^{2}} = 0 \implies \beta = \frac{\pi}{4} + \frac{1}{2}\cdot\varphi$$
$$\frac{\mathrm{d}^{2}f}{\mathrm{d}\beta^{2}} = -2 \text{ for } \beta = \frac{\pi}{4} + \frac{1}{2}\cdot\varphi$$

$$\mathbf{F} = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \left(\frac{1 - \sin(\phi)}{1 + \sin(\phi)}\right) = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \mathbf{K}_{a}$$

$$K_{A} = \frac{1 - \sin \varphi}{1 + \sin \varphi} = \tan^{2}(45 - \varphi/2)$$

$$\sigma_{h} = K_{A} \cdot \sigma_{v}$$

FUDDEIft Delft University of Technology Offshore & Dredging Engineering

Passive Soil Failure 1

FUDDEIft Delft University of Technology Offshore & Dredging Engineering

Active Soil Failure 5

Passive Soil Failure

$\mathbf{G} = \frac{1}{2} \cdot \boldsymbol{\rho}_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \cot(\boldsymbol{\beta})$

 $\mathbf{S} = \mathbf{N} \cdot \mathbf{tan}(\boldsymbol{\varphi})$

No cohesion \Rightarrow c=0 No adhesion \Rightarrow a=0

Smooth wall $\Rightarrow \delta=0$

Horizontal \Rightarrow F - S · cos(β) - N · sin(β) = 0 Vertical \Rightarrow G - N · cos(β) + S · sin(β) = 0

Passive Soil Failure 3

$$\mathbf{F} = \mathbf{G} \cdot \tan\left(\boldsymbol{\varphi} + \boldsymbol{\beta}\right)$$
$$\mathbf{G} = \frac{1}{2} \cdot \boldsymbol{\rho}_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \cot\left(\boldsymbol{\beta}\right)$$

$$\mathbf{F} = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \frac{\cos(\beta) \cdot \sin(\phi + \beta)}{\sin(\beta) \cdot \cos(\phi + \beta)}$$

F at minimum if:

$$\frac{\mathrm{dF}}{\mathrm{d\beta}} = 0 \qquad \frac{\mathrm{d}^2 \mathrm{F}}{\mathrm{d\beta}^2}$$

>0

$$\mathbf{F} = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \left(1 + \frac{\sin(\varphi)}{\sin(\beta) \cdot \cos(\varphi + \beta)}\right)$$

 $f = sin(\beta) \cdot cos(\beta + \phi) \implies F$ minimum if f maximum

Intermezzo

$$\frac{\cos(\beta) \cdot \sin(\varphi + \beta)}{\sin(\beta) \cdot \cos(\varphi + \beta)} = \frac{\cos(\beta) \cdot \sin(\varphi + \beta)}{\sin(\beta) \cdot \cos(\varphi + \beta)} - 1 + 1 =$$

$$\frac{\cos(\beta) \cdot \sin(\varphi + \beta)}{\sin(\beta) \cdot \cos(\varphi + \beta)} - \frac{\sin(\beta) \cdot \cos(\varphi + \beta)}{\sin(\beta) \cdot \cos(\varphi + \beta)} + 1 =$$

$$\frac{\cos(-\beta)\cdot\sin(\varphi+\beta)}{\sin(\beta)\cdot\cos(\varphi+\beta)} + \frac{\sin(-\beta)\cdot\cos(\varphi+\beta)}{\sin(\beta)\cdot\cos(\varphi+\beta)} + 1 =$$

$$1 + \frac{\sin(\varphi)}{\sin(\beta) \cdot \cos(\varphi + \beta)}$$

Offshore & Dredging Engineering

Passive Soil Failure 4

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{\beta}} = \cos\left(2\cdot\boldsymbol{\beta} + \boldsymbol{\varphi}\right)$$

$$\frac{\mathrm{d}^{2}\mathrm{f}}{\mathrm{d}\beta^{2}} = -2\cdot\sin\left(2\cdot\beta+\varphi\right)$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{\beta}} = 0 \implies \boldsymbol{\beta} = \frac{\pi}{4} - \frac{1}{2} \cdot \boldsymbol{\phi}$$

$$\frac{\mathrm{d}^2 \mathrm{f}}{\mathrm{d}\beta^2} = -2 \text{ for } \beta = \frac{\pi}{4} - \frac{1}{2} \cdot \varphi$$

$$\mathbf{F} = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \left(\frac{1 + \sin(\varphi)}{1 - \sin(\varphi)}\right) = \frac{1}{2} \cdot \rho_{g} \cdot \mathbf{g} \cdot \mathbf{h}^{2} \cdot \mathbf{K}_{p}$$

$$K_{P} = \frac{1 + \sin \phi}{1 - \sin \phi} = \tan^{2}(45 + \phi/2) \qquad \sigma_{h} = K_{p} \cdot \sigma$$

Passive Soil Failure 5

Active & Passive Soil Failure

Active & Passive Soil Failure, Cohesion

Cutting Mechanisms

Hatamura Chijiiwa Equipment

Hatamura Chijiiwa Test Facility

Hatamura Chijiiwa Dry Quarts Sand

(a) Dry quartz sand

Hatamura Chijiiwa Wet Quarts Sand

(b) Wet quartz sand

Hatamura Chijiiwa Plastic Bentonite

(c) Plastic bentonite

Hatamura Chijiiwa Plastic Loam

(d) Plastic loam

Hatamura Chijiiwa Plastic Clay

Hatamura Chijiiwa Compacted Loam

(f) Compacted loam

Hatamura Chijiiwa Failure Types

Hatamura Chijiiwa Conditions

Hatamura Chijiiwa Stresses

Fig. 14 Idealized distribution of principal stresses in soil produced by cutting

Hatamura Chijiiwa Mechanisms

Hatamura Chijiiwa Types

(b) Plastic bentonite etc.

Fig. 16 Relationship between failure conditions and stress situations in soil presenting shear type

Fig. 17 Relationship between rupture conditions and stress situations in soil presenting flow type

Fig. 18 Relationship between failure conditions and stress situations in soil presenting tear type

ρ

Delft University of Technology Offshore & Dredging Engineering

Hatamura Chijiiwa Dry Sand 30 deg.

(a) Cutting angle $\alpha = 30^{\circ}$

Hatamura Chijiiwa Dry Sand 45 deg.

Hatamura Chijiiwa Dry Sand 60 deg.

Hatamura Chijiiwa Dry Sand 75 deg.

Hatamura Chijiiwa Dry Sand 90 deg.

Hatamura Chijiiwa Plastic Loam 30 deg.

(a) Cutting angle $\alpha = 30^{\circ}$

Hatamura Chijiiwa Plastic Loam 45 deg.

(b) Cutting angle $\alpha = 45^{\circ}$

Hatamura Chijiiwa Plastic Loam 60 deg.

(c) Cutting angle $\alpha = 60^{\circ}$

Hatamura Chijiiwa Plastic Loam 75 deg.

Hatamura Chijiiwa Plastic Loam 90 deg.

Definitions

f+

Delft University of Technology Offshore & Dredging Engineering

Cutting Mechanisms

Cutting Forces

Offshore & Dredging Engineering

Forces on the Layer Cut

Forces on the Blade

Moments

Resulting Equations

$$K_{2} = \frac{W_{2} \cdot \sin(\alpha + \beta + \varphi) + W_{1} \cdot \sin(\varphi) + G \cdot \sin(\beta + \varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$\frac{+I \cdot \cos(\varphi) + C \cdot \cos(\varphi) - A \cdot \cos(\alpha + \beta + \varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_h = -W_2 \cdot \sin(\alpha) + K_2 \cdot \sin(\alpha + \delta) + A \cdot \cos(\alpha)$$

$$F_{\nu} = -W_2 \cdot \cos(\alpha) + K_2 \cdot \cos(\alpha + \delta) - A \cdot \sin(\alpha)$$

elft

Delft University of Technology Offshore & Dredging Engineering

Which Terms in Which Soil

	Gravity	Inertia	Pore Pressure	Cohesion	Adhesion	Friction
Dry sand						
Saturated						
sand						
Clay						
Atmospheric						
rock						
Hyperbaric						
rock						

Cutting Forces with Wedge

Faculty of 3mE - Dredging Engineering

TUDEIft Delft University of Technology Offshore & Dredging Engineering

A Wedge in Dry Sand

Wedge Definitions

Forces on Layer Cut

Forces on the Wedge

Forces on the Blade

Moments on the Wedge

Snow Plough Effect

Snow Plough Effect

Delft University of Technology Offshore & Dredging Engineering

Snow Plough Velocities

Delft University of Technology Offshore & Dredging Engineering

Effective Friction & Shear Stress

$$\tan(\varphi_{e}) = \tan(\varphi) \cdot \cos\left(\operatorname{atn}\left(\frac{v_{d1}}{v_{r1}}\right)\right)$$

$$\tan\left(\delta_{e}\right) = \tan\left(\delta\right) \cdot \cos\left(\operatorname{atn}\left(\frac{v_{d2}}{v_{r2}}\right)\right)$$

$$\mathbf{c}_{\mathbf{e}} = \mathbf{c} \cdot \mathbf{cos} \left(\mathbf{atn} \left(\frac{\mathbf{v}_{\mathbf{d}1}}{\mathbf{v}_{\mathbf{r}1}} \right) \right)$$

$$\mathbf{a}_{\mathbf{e}} = \mathbf{a} \cdot \cos\left(\operatorname{atn}\left(\frac{\mathbf{v}_{\mathbf{d}2}}{\mathbf{v}_{\mathbf{r}2}}\right)\right)$$

FUDER Delft University of Technology Offshore & Dredging Engineering

Wear and 3D Effects

Forces on the Blade

ρ

Delft University of Technology Offshore & Dredging Engineering

f+

ρ

Delft University of Technology Offshore & Dredging Engineering

3D Effects

Questions?

Sources images

- 1. A model cutter head, source: Delft University of Technology.
- 2. Off shore platform, source: Castrol (Switzerland) AG
- 3. Off shore platform, source: http://www.wireropetraining.com
- 4. Diagram of the failure pattern with Rake angle 120, source: TUDelft/S.A.Miedema

