
Offshore 

Hydromechanics 

Module 1 
Dr. ir. Pepijn de Jong 

3. Potential Flows part 1 



  Tutorial Lecture Online Assignments 

Week date time location topic date time location topic deadline topic 

2         11-Sep 
8:45-
10:30 

3mE-CZ B 
Intro, Hydrostatics, 

Stability 
    

3         18-Sep 
8:45-
10:30 

DW-Room 
2 

Hydrostatics, 
Stability 

    

4 23-Sep 
8:45-
10:30 

TN-
TZ4.25 

Hydrostatics, 
Stability 

25-Sep 
8:45-
10:30 

3mE-CZ B Potential Flows 27-Sep 
Hydrostatics, 

Stability 

5         02-Oct 
8:45-
10:30 

3mE-CZ B Potential Flows     

6 07-Oct 
8:45-
10:30 

TN-
TZ4.25 

Potential Flows 09-Oct 
8:45-
10:30 

3mE-CZ B Real Flows 11-Oct Potential Flows 

7 14-Oct 
8:45-
10:30 

TN-
TZ4.25 

Real Flows 16-Oct 
8:45-
10:30 

3mE-CZ B Real Flows, Waves 18-Oct Real Flows 

8         23-Oct 
8:45-
10:30 

3mE-CZ B Waves 25-Oct Waves 

Exam 30-Oct 
9:00-
12:00 

TN-
TZ4.25 

Exam 

Introduction 

Overview 
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• Grade counted as follows: exam 80%, bonus assignments 20% 

• If it improves your final grade… 

• Only bonus assignments count 

 

• E-Assessment Potential Flows: 

• Formative Exercises (set of 5, 4 tries, minimum 3/5 score) 

• Bonus Assignment 

 

Introduction 

E-Assessment 
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• Problems of interest     Chapter 1 

• Hydrostatics      Chapter 2 

• Floating stability     Chapter 2 

• Constant potential flows    Chapter 3 

• Constant real flows     Chapter 4 

• Waves      Chapter 5 

 

 

 

Introduction 

Topics of Module 1 
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• Understand the basic principles behind potential flow 

 

• To schematically model flows applying basic potential flow 
elements and the superposition principle 

 

• To perform basic flow computations applying potential flow 
theory 

Learning Objectives 

Chapter 3 
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Fluid Mechanics Laws 
Basic assumptions (Euler flow, potential flow) 

• Homogeneous  properties are evenly spread over fluid 

 

• Continuous  no bubbles, holes, particles, shocks etc 

 

• Incompressible 

 

• Non-viscous 

 

 

 

• Without the latter 2 assumptions you end up with the Navier-Stokes 

eqs. 

 

ρ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

μ = 0 
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Fluid Mechanics Laws 
Basic assumptions 

• Assumptions: 

 

• Are restrictive: they limit applicability of calculations 

 

• Are (often) necessary: to obtain a solution within a reasonable 

amount of effort 

 

• Discrepancies often addressed in a semi-empirical manner: 

• Very simplified models or coefficients based on experimental 

data 
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Fluid Mechanics Laws 
Continuity (Conservation of mass) 

• Physical principle: 

• Mass can be neither created nor destroyed 

 

 

 
 𝑑𝑥 

𝑑𝑦 

𝑑𝑧 

𝑥 

𝑦 

𝑧 
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Fluid Mechanics Laws 
Continuity 

 

 
 

𝑣 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 

𝑥 

𝑦 

𝑧 

𝑦 

Net mass flow out of control volume 

= 

Time rate of decrease of mass within control volume 
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Fluid Mechanics Laws 
Continuity 

 

 
 

𝑣 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 

𝑥 

𝑦 

𝑧 
𝑚𝑖𝑦 = ρ ∙ 𝑣𝑑𝑥𝑑𝑧 ∙ 𝑑𝑡 = ρ𝑣 ∙ 𝑑𝑥𝑑𝑧𝑑𝑡 

𝑚𝑜𝑦 = ρ𝑣 +
𝜕ρ𝑣

𝜕𝑦
𝑑𝑦 ⋅ 𝑑𝑥𝑑𝑧𝑑𝑡 

𝑑𝑚𝑦

𝑑𝑡
=
𝑑𝑚𝑜𝑦

𝑑𝑡
−
𝑑𝑚𝑖𝑦

𝑑𝑡
 

𝑑𝑚𝑦

𝑑𝑡
=
𝜕ρ𝑣

𝜕𝑦
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 

Net mass flow out of control volume: 

Net mass flow out of control volume 

= 

Time rate of decrease of mass within control volume 
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Fluid Mechanics Laws 
Continuity 

 

 
 

𝑣 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 

𝑥 

𝑦 

𝑧 

𝑑𝑚𝑦

𝑑𝑡
=
𝜕ρ𝑣

𝜕𝑦
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑑𝑚𝑥
𝑑𝑡
=
𝜕ρ𝑢

𝜕𝑥
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑑𝑚𝑧
𝑑𝑡
=
𝜕ρ𝑤

𝜕𝑧
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 

Net mass flow out of CV: 

Time rate of  mass decrease within CV: 

−
𝜕ρ

𝜕𝑡
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 

Net mass flow out of control volume 

= 

Time rate of decrease of mass within control volume 
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Fluid Mechanics Laws 
Continuity 

 

 

𝑣 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 

𝑥 

𝑧 

𝜕ρ

𝜕𝑡
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕ρ𝑢

𝜕𝑥
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕ρ𝑣

𝜕𝑦
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕ρ𝑤

𝜕𝑧
⋅ 𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

Net mass flow out of control volume 

= 

Time rate of decrease of mass within control volume 

𝜕ρ

𝜕𝑡
+
𝜕ρ𝑢

𝜕𝑥
+
𝜕ρ𝑣

𝜕𝑦
+
𝜕ρ𝑤

𝜕𝑧
= 0 
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Fluid Mechanics Laws 
Continuity 

 

 

𝜕ρ

𝜕𝑡
+ 𝛻 ⋅ ρ𝑉 = 0 

𝜕ρ

𝜕𝑡
+
𝜕ρ𝑢

𝜕𝑥
+
𝜕ρ𝑣

𝜕𝑦
+
𝜕ρ𝑤

𝜕𝑧
= 0 

Net mass flow out of control volume 

= 

Time rate of decrease of mass within control volume 

𝑣 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 

𝑥 

𝑧 

𝛻 =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
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𝜕ρ

𝜕𝑡
+
𝜕ρ𝑢

𝜕𝑥
+
𝜕ρ𝑣

𝜕𝑦
+
𝜕ρ𝑤

𝜕𝑧
= 0 

Fluid Mechanics Laws 
Continuity 

 

 
Incompressible flow: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 

𝛻 ⋅ 𝑉 = 0 

Net mass flow out of control volume 

= 

Time rate of decrease of mass within control volume 

𝑣 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 

𝑥 

𝑧 

𝛻 =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
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Fluid Mechanics Laws 
Conservation of momentum 

• Apply Newton's second law for: 

 

• Incompressible fluid → constant density 

• Inviscid fluid → no tangential stresses in fluid 

 

 

• Then the conservation of momentum yields the 'Euler Equations' 

 

 

• (Linear) Momentum: 

 

 

 

 

𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑉

𝑑𝑡
=
𝑑

𝑑𝑡
𝑚𝑉  
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Fluid Mechanics Laws 
Con. of momentum 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 

𝑥 

𝑦 

𝑧 

𝑣 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 

Net momentum flux out of control volume 

 = 

Time rate of decrease of momentum within control volume 

+ 

Sum of forces on control volume 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum within control volume 

= 

Sum of forces on control volume 

ρ𝑣𝑑𝑥𝑑𝑧 ∙ 𝑉 = ρ𝑣𝑉 ∙ 𝑑𝑥𝑑𝑧 

ρ𝑣𝑉 +
𝜕

𝜕𝑥
ρ𝑣𝑉 𝑑𝑦 𝑑𝑥𝑑𝑧 

Inlet momentum flux: 

Outlet momentum flux: 

Momentum flux: 

𝑑

𝑑𝑡
𝑚𝑉 →

𝑑𝑚

𝑑𝑡
𝑉 = ρ𝑣𝑑𝑥𝑑𝑧 ∙ 𝑉 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 

𝑥 

𝑦 

𝑧 

𝑣 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum within control volume 

= 

Sum of forces on control volume 

ρ𝑣𝑉 ∙ 𝑑𝑥𝑑𝑧 

ρ𝑣𝑉 +
𝜕

𝜕𝑦
ρ𝑣𝑉 𝑑𝑦 𝑑𝑥𝑑𝑧 

Inlet momentum flux: 

Outlet momentum flux: 

Net momentum flux (out): 

𝜕

𝜕𝑦
ρ𝑣𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 

𝑥 

𝑦 

𝑧 

𝑣 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume 

−
𝑑

𝑑𝑡
ρ𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑑

𝑑𝑡
𝑚𝑉 →

𝜕

𝜕𝑡
ρ𝑑𝑉𝑉  

Time rate of momentum in CV: 

Time rate of decrease of momentum in CV: 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 

𝑥 

𝑦 

𝑧 

𝑣 
𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume 

−
𝜕

𝜕𝑡
ρ𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 

Time rate of decrease of momentum in CV: 

Net momentum flux (out): 

𝜕

𝜕𝑥
ρ𝑢𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 

𝜕

𝜕𝑧
ρ𝑤𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 

𝜕

𝜕𝑦
ρ𝑣𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 

Result: 

𝜕

𝜕𝑡
ρ𝑉 +

𝜕

𝜕𝑥
ρ𝑢𝑉 +

𝜕

𝜕𝑦
ρ𝑣𝑉 +

𝜕

𝜕𝑧
ρ𝑤𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐹 

Sum of forces 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume 

Further reduction is possible: 

𝜕

𝜕𝑡
ρ𝑉 +

𝜕

𝜕𝑥
ρ𝑢𝑉 +

𝜕

𝜕𝑦
ρ𝑣𝑉 +

𝜕

𝜕𝑧
ρ𝑤𝑉 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐹 

𝑉
𝜕ρ

𝜕𝑡
+ 𝛻 ⋅ ρ𝑉 + ρ

𝜕𝑉

𝜕𝑡
+ 𝑢
𝜕𝑉

𝜕𝑥
+ 𝑣
𝜕𝑉

𝜕𝑦
+ 𝑤
𝜕𝑉

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐹 

Conservation of mass! 

ρ
𝜕𝑉

𝜕𝑡
+ 𝑢
𝜕𝑉

𝜕𝑥
+ 𝑣
𝜕𝑉

𝜕𝑦
+ 𝑤
𝜕𝑉

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐹 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume 

Can be written as: 

ρ
𝜕𝑉

𝜕𝑡
+ 𝑢
𝜕𝑉

𝜕𝑥
+ 𝑣
𝜕𝑉

𝜕𝑦
+ 𝑤
𝜕𝑉

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐹 

ρ
𝐷𝑉

𝐷𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐹 

Using the 'substantial derivative': 

The total derivative of a particle that moves with the fluid through the control volume: 

𝐷𝑉

𝐷𝑡
=
𝜕𝑉

𝜕𝑡
+ 𝑢
𝜕𝑉

𝜕𝑥
+ 𝑣
𝜕𝑉

𝜕𝑦
+ 𝑤
𝜕𝑉

𝜕𝑧
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume 

Gravity forces: 

𝑑𝐹 𝑔𝑟𝑎𝑣 = ρ𝑔 𝑑𝑥𝑑𝑦𝑑𝑧 

𝑔 = 0,0, −𝑔  

Surface forces (neglecting viscous stresses): 

𝑑𝐹𝑥𝑠𝑢𝑟𝑓 =
−𝜕𝑝

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 

𝑑𝐹𝑦𝑠𝑢𝑟𝑓 =
−𝜕𝑝

𝜕𝑦
𝑑𝑦𝑑𝑥𝑑𝑧 

𝑑𝐹𝑧𝑠𝑢𝑟𝑓 =
−𝜕𝑝

𝜕𝑧
𝑑𝑧𝑑𝑥𝑑𝑦 

𝑑𝑥 

𝑑𝑦 

𝑑𝑧 

𝑥 

𝑦 

𝑧 

−𝑝𝑑𝑥𝑑𝑧 

−𝑝 −
𝜕𝑝

𝜕𝑦
𝑑𝑦 𝑑𝑥𝑑𝑧 

𝑑𝐹𝑠𝑢𝑟𝑓 = −𝛻𝑝𝑑𝑥𝑑𝑦𝑑𝑧 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume Gravity forces: 

𝑑𝐹 𝑔𝑟𝑎𝑣 = ρ𝑔 𝑑𝑥𝑑𝑦𝑑𝑧 

Surface forces (neglecting viscous stresses): 

𝑑𝐹𝑠𝑢𝑟𝑓 = −𝛻𝑝𝑑𝑥𝑑𝑦𝑑𝑧 

ρ
𝐷𝑉

𝐷𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 = ρ𝑔 𝑑𝑥𝑑𝑦𝑑𝑧 − 𝛻𝑝𝑑𝑥𝑑𝑦𝑑𝑧 

Conservation of momentum: 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume Gravity forces: 

𝑑𝐹 𝑔𝑟𝑎𝑣 = ρ𝑔 𝑑𝑥𝑑𝑦𝑑𝑧 

Surface forces (neglecting viscous stresses): 

𝑑𝐹𝑠𝑢𝑟𝑓 = −𝛻𝑝𝑑𝑥𝑑𝑦𝑑𝑧 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 

Conservation of momentum: 
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Fluid Mechanics Laws 
Con. of momentum Net momentum flux out of control volume 

 - 

Time rate of decrease of momentum in control volume 

= 

Sum of forces on control volume Gravity forces: 

𝑑𝐹 𝑔𝑟𝑎𝑣 = ρ𝑔 𝑑𝑥𝑑𝑦𝑑𝑧 

Surface forces (neglecting viscous stresses): 

𝑑𝐹𝑠𝑢𝑟𝑓 = −𝛻𝑝𝑑𝑥𝑑𝑦𝑑𝑧 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 

Conservation of momentum: 

Euler Equation for inviscid flow 
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Fluid Mechanics Laws 
Deformation and rotation  (2D) 

• Stresses within fluid will deform the cube considered before 

 

• Explanation in book (p. 3-4 and 3-5) very shady/shaky 

 

• We will consider a 2D slice of the cube 
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Fluid Mechanics Laws 

𝑑𝑥 +
𝜕𝑢

𝜕𝑥
𝑑𝑥𝑑𝑡 

𝑑𝑦 +
𝜕𝑣

𝜕𝑦
𝑑𝑦𝑑𝑡 𝑑𝑦 

𝜕𝑢

𝜕𝑦
𝑑𝑦𝑑𝑡 

𝜕𝑣

𝜕𝑥
𝑑𝑥𝑑𝑡 

Deformation and rotation  (2D) 

𝑑𝑥 

α 

β 
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Fluid Mechanics Laws 
Deformation and rotation  (2D) 

• Define angular velocity 

(or rotation) about z-axis as: 

 

 

 

 

 

 

• Define deformation velocity 

(or dilatation) as: 

 

 

 

 

ω𝑧 =
1

2

𝑑α

𝑑𝑡
−
𝑑β

𝑑𝑡
 

𝑑𝑥 +
𝜕𝑢

𝜕𝑥
𝑑𝑥𝑑𝑡 

𝑑𝑦 +
𝜕𝑣

𝜕𝑦
𝑑𝑦𝑑𝑡 𝑑𝑦 

𝜕𝑢

𝜕𝑦
𝑑𝑦𝑑𝑡 

𝜕𝑣

𝜕𝑥
𝑑𝑥𝑑𝑡 

𝑑𝑥 
𝑑α 

𝑑β 

1

2

𝑑α

𝑑𝑡
+
𝑑β

𝑑𝑡
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Fluid Mechanics Laws 
Deformation and rotation  (2D) 

• Define angular velocity 

(or rotation) about z-axis as: 

 

 

 

 

 

 

 

 

 

 

ω𝑧 =
1

2

𝑑α

𝑑𝑡
−
𝑑β

𝑑𝑡
 

𝑑β = lim
𝑑𝑡→0
tan−1

𝜕𝑢
𝜕𝑦
𝑑𝑦𝑑𝑡

𝑑𝑦 +
𝜕𝑣
𝜕𝑦
𝑑𝑦𝑑𝑡

 

𝑑α = lim
𝑑𝑡→0
tan−1

𝜕𝑣
𝜕𝑥
𝑑𝑥𝑑𝑡

𝑑𝑥 +
𝜕𝑢
𝜕𝑥
𝑑𝑥𝑑𝑡

 

𝑑𝑥 +
𝜕𝑢

𝜕𝑥
𝑑𝑥𝑑𝑡 

𝑑𝑦 +
𝜕𝑣

𝜕𝑦
𝑑𝑦𝑑𝑡 𝑑𝑦 

𝜕𝑢

𝜕𝑦
𝑑𝑦𝑑𝑡 

𝜕𝑣

𝜕𝑥
𝑑𝑥𝑑𝑡 

𝑑𝑥 
𝑑α 

𝑑β 
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Fluid Mechanics Laws 
Deformation and rotation  (2D) 

• Define angular velocity 

(or rotation) about z-axis as: 

 

 

 

 

 

 

 

 

 

 

𝑑β = lim
𝑑𝑡→0
tan−1

𝜕𝑢
𝜕𝑦
𝑑𝑦𝑑𝑡

𝑑𝑦 +
𝜕𝑣
𝜕𝑦
𝑑𝑦𝑑𝑡

=
𝜕𝑢

𝜕𝑦
𝑑𝑡 𝑑α = lim

𝑑𝑡→0
tan−1

𝜕𝑣
𝜕𝑥
𝑑𝑥𝑑𝑡

𝑑𝑥 +
𝜕𝑢
𝜕𝑥
𝑑𝑥𝑑𝑡

=
𝜕𝑣

𝜕𝑥
𝑑𝑡 

ω𝑧 =
1

2

𝑑α

𝑑𝑡
−
𝑑β

𝑑𝑡
 

ω𝑧 =
1

2

𝜕𝑣
𝜕𝑥
𝑑𝑡

𝑑𝑡
−

𝜕𝑢
𝜕𝑦
𝑑𝑡

𝑑𝑡
 =
1

2

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
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• Rotation in 3D 

 

 

 

 

• Rotation equals the 'curl' of the velocity vector: 

 

 

 

 

 

• Vorticity of a fluid is defined as twice the rotation: 

Fluid Mechanics Laws 
Rotation in 3D and vorticity 

ω𝑦 =
1

2

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
 ω𝑥 =

1

2

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 ω𝑧 =

1

2

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

ω =
1

2
𝛻 × 𝑉 

𝛻 =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
 

ζ = 2ω = 𝛻 × 𝑉 
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Fluid Mechanics Laws 
Summarizing: 

 

 

 

 

 

 

 

 

 

 

 

• Conservation of mass (continuity):               Incompressible flow: 

 

 

 

 

• Conservation of momentum (inviscid flow): 

 

 

 

 

• Rotation of a fluid element:   Vorticity: 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 

𝜕ρ

𝜕𝑡
+ 𝛻 ⋅ ρ𝑉 = 0 𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 𝛻 ⋅ 𝑉 = 0 

ω𝑦 =
1

2

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
 

ω𝑥 =
1

2

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 ω𝑧 =

1

2

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

ζ = 2ω = 𝛻 × 𝑉 
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Fluid Mechanics Laws 
Velocity Potential 

• Assumptions 

 

• Homogeneous   

 

• Continuous  

 

• Incompressible 

 

• Non-viscous (inviscid) 

 

• Extra assumption: 

 

• Irrotational flow → 

 

ζ = 2ω = 𝛻 × 𝑉 = 0 
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Fluid Mechanics Laws 
Velocity Potential 

• Theorem in vector calculus: 

 

In case the curl of a vector is zero, then the vector must be the 

gradient of a scalar function 

 

 

 

• Thus: 

 

 

 

• where      is a scalar function 

 

•     is known as the Velocity Potential 

ζ = 2ω = 𝛻 × 𝑉 = 0 

𝑉 = 𝛻Φ 

Φ 

Φ 
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Fluid Mechanics Laws 
Velocity Potential 

• The velocity potential is a function of time and position: 

 

 

 

 

 

• The spatial derivatives of the velocity potential equal the velocity 

components at a time and position: 

 

 

 

 

 

• Potential lines are defined as: 

 

 

𝜕Φ

𝜕𝑥
= 𝑢 

Φ 𝑥, 𝑦, 𝑧, 𝑡  

𝜕Φ

𝜕𝑦
= 𝑣 

𝜕Φ

𝜕𝑧
= 𝑤 

Φ 𝑥, 𝑦, 𝑧, 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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Fluid Mechanics Laws 
Velocity Potential 

• In 2D polar coordinates: 

 

 

 

 

 

 

 

 

𝑣𝑟 =
𝜕Φ

𝜕𝑟
 

Φ 𝑟, θ, 𝑡  

𝑣θ =
1

𝑟
⋅
𝜕Φ

𝜕θ
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Fluid Mechanics Laws 
Velocity Potential 

• Continuity equation for incompressible flow: 

 

 

 

 

• Velocity components: 

 

 

 

 

• Continuity equation for potential flow: 

 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 

𝑢 =
𝜕Φ

𝜕𝑥
 𝑣 =

𝜕Φ

𝜕𝑦
 𝑤 =

𝜕Φ

𝜕𝑧
 

𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑦2
+
𝜕2Φ

𝜕𝑧2
= 0 𝛻2Φ = 0 Laplace equation 

38 



Fluid Mechanics Laws 
Velocity Potential 

• Irrotational flow (in 2D): 

 

 

 

thus: 

 

 

 

thus: 

 

 

        thus: 

𝑢 =
𝜕Φ

𝜕𝑥
 

𝜕𝑢

𝜕𝑦
=
𝜕

𝜕𝑦

𝜕Φ

𝜕𝑥
=
𝜕2Φ

𝜕𝑦𝜕𝑥
 

𝑣 =
𝜕Φ

𝜕𝑦
 

𝜕𝑣

𝜕𝑥
=
𝜕

𝜕𝑥

𝜕Φ

𝜕𝑦
=
𝜕2Φ

𝜕𝑥𝜕𝑦
 

𝜕2Φ

𝜕𝑦𝜕𝑥
=
𝜕2Φ

𝜕𝑥𝜕𝑦
 ω𝑧 =

1

2

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
= 0 
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Fluid Mechanics Laws 
Velocity Potential 

• Irrotational flow (in 3D): 

 

 

in the (x,y) plane 

 

 

in the (y,z) plane 

 

 

in the (x,z) plane 

 

 

 

𝜕𝑣

𝜕𝑥
=
𝜕𝑢

𝜕𝑦
 

𝜕𝑤

𝜕𝑦
=
𝜕𝑣

𝜕𝑧
 

𝜕𝑢

𝜕𝑧
=
𝜕𝑤

𝜕𝑥
 

ω𝑦 =
1

2

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
 

ω𝑥 =
1

2

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 

ω𝑧 =
1

2

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
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Fluid Mechanics Laws 
Bernoulli Equation 

• Recall the Euler Equations (sheet 29): 

 

 

 

 

 

 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Recall the Euler Equations (sheet 29): 

 

 

• Note that: 

 

 

 

 

 

 

 

 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 

𝐷𝑉

𝐷𝑡
=
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻 𝑉 𝑉 ⋅ 𝛻 𝑉 = 𝛻

1

2
𝑉2 + ζ × 𝑉 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Recall the Euler Equations (sheet 29): 

 

 

• Note that: 

 

 

 

 

• Then: 

 

 

 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 

𝐷𝑉

𝐷𝑡
=
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻 𝑉 

ρ
𝜕𝑉

𝜕𝑡
+ 𝛻
1

2
𝑉2 + ζ × 𝑉 = ρ𝑔 − 𝛻𝑝 

𝑉 ⋅ 𝛻 𝑉 = 𝛻
1

2
𝑉2 + ζ × 𝑉 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Recall the Euler Equations (sheet 29): 

 

 

• Note that: 

 

 

 

 

• Then: 

 

 

 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 

𝐷𝑉

𝐷𝑡
=
𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ 𝛻 𝑉 𝑉 ⋅ 𝛻 𝑉 = 𝛻

1

2
𝑉2 + ζ × 𝑉 

𝜕𝑉

𝜕𝑡
+ 𝛻
1

2
𝑉2 + ζ × 𝑉 − 𝑔 + 𝛻

𝑝

ρ
= 0 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Dot with small displacement along streamline dr = (dx, dy, dz): 

 

 

 

 

• Then ‘work done’ by fluid along dr: 

 

 

 

 

• This can be integrated along any two points along a streamline, however: 

 

 

 

ζ × 𝑉 ⋅ 𝑑𝑟  is a difficult to evaluate term 

𝜕𝑉

𝜕𝑡
⋅ 𝑑𝑟 + 𝑑

1

2
𝑉2 + ζ × 𝑉 ⋅ 𝑑𝑟 − 𝑔𝑑𝑧 +

𝑑𝑝

ρ
= 0 

𝜕𝑉

𝜕𝑡
+ 𝛻
1

2
𝑉2 + ζ × 𝑉 − 𝑔 + 𝛻

𝑝

ρ
⋅ 𝑑𝑟 = 0 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Possibilities to deal with                    : 

 

•     is zero; no flow only hydrostatics 

•     is zero; irrotational flow 

•       is perpendicular to            ; very rare solution 

•       is parallel to           ; integrate along streamline 

 

 

 

𝑉 

ζ × 𝑉 ⋅ 𝑑𝑟  

ζ  

𝑑𝑟  ζ × 𝑉 

𝑑𝑟  ζ × 𝑉 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Possibilities to deal with                    : 

 

•     is zero; no flow only hydrostatics 

•     is zero; irrotational flow 

•       is perpendicular to            ; very rare solution 

•       is parallel to           ; integrate along streamline 

 

 

 

𝑉 

ζ  

𝑑𝑟  

𝑑𝑟  

ζ × 𝑉 ⋅ 𝑑𝑟  

ζ × 𝑉 

ζ × 𝑉 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Possibilities to deal with                    : 

 

•     is zero; no flow only hydrostatics 

•     is zero; irrotational flow → POTENTIAL FLOW 

•       is perpendicular to            ; very rare solution 

•       is parallel to           ; integrate along streamline 

 

 

 

𝑉 

ζ  

𝑑𝑟  

𝑑𝑟  

ζ × 𝑉 ⋅ 𝑑𝑟  

ζ × 𝑉 

ζ × 𝑉 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Potential flow: 

 

 

 

𝜕𝑉

𝜕𝑡
⋅ 𝑑𝑟 + 𝑑

1

2
𝑉2 − 𝑔𝑑𝑧 +

𝑑𝑝

ρ
= 0 

𝑉 = 𝛻Φ 

𝜕𝛻Φ

𝜕𝑡
⋅ 𝑑𝑟 + 𝑑

1

2
𝛻Φ
2
− 𝑔𝑑𝑧 +

𝑑𝑝

ρ
= 0 

𝑑
𝜕Φ

𝜕𝑡
+ 𝑑
1

2
𝛻Φ
2
− 𝑔𝑑𝑧 +

𝑑𝑝

ρ
= 0 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Potential flow: 

 

 

 

 

 

• Finally simple integration yields (between any two points): 

 

 

 

𝑉 = 𝛻Φ 

 𝑑
𝜕Φ

𝜕𝑡

2

1

+ 𝑑
1

2
𝑉2

2

1

− 𝑔𝑑𝑧

2

1

+ 
𝑑𝑝

ρ

2

1

= 0 

𝑑
𝜕Φ

𝜕𝑡
+ 𝑑
1

2
𝛻Φ
2
− 𝑔𝑑𝑧 +

𝑑𝑝

ρ
= 0 

𝜕Φ

𝜕𝑡 2
−
𝜕Φ

𝜕𝑡 1
+
1

2
𝑉2
2 − 𝑉1

2 − 𝑔 𝑧2 − 𝑧1 +
𝑝2 − 𝑝1
ρ
= 0 
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Fluid Mechanics Laws 
Bernoulli Equation 

• Potential flow: 

 

 

 

 

 

• Finally simple integration yields (between any two points): 

 

 

 

𝑉 = 𝛻Φ 

𝑑
𝜕Φ

𝜕𝑡
+ 𝑑
1

2
𝛻Φ
2
− 𝑔𝑑𝑧 +

𝑑𝑝

ρ
= 0 

𝜕Φ

𝜕𝑡 2
−
𝜕Φ

𝜕𝑡 1
+
1

2
𝑉2
2 − 𝑉1

2 − 𝑔 𝑧2 − 𝑧1 +
𝑝2 − 𝑝1
ρ
= 0 

𝜕Φ

𝜕𝑡
+
1

2
𝛻Φ
2
− 𝑔𝑧 +

𝑝

ρ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Bernoulli equation 
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Fluid Mechanics Laws 
Steady and Unsteady Flow 

• Steady flow: at any point in flow the velocity is independent of time 

 

 

 

 

• Unsteady flow: any other flow 

 

• E.g. waves 

• Motions of floating objects in a flow 

• etc. 

𝑑𝑉

𝑑𝑡
= 0 

𝜕Φ

𝜕𝑡
+
1

2
𝛻Φ 2 − 𝑔𝑧 +

𝑝

ρ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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Potential Flow 
Stream lines (2D) 

• Definition: 

• A line that follows the flow (as if you would have injected dye into the 

flow) 

 

 

• Stream line: curve tangent to flow velocity vectors at a time instant: 

 

 

 

𝑥 

𝑦 

𝑣 

𝑉 

𝑢 

𝑦 = 𝑓 𝑥  
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Potential Flow 
Stream function (2D) 

𝑑𝑠 

𝑑𝑥 

𝑑𝑦 

Abitrary line through fluid flow 

𝑥 

𝑦 

𝑛 

𝑉 

−𝑑𝑦

𝑑𝑥2 + 𝑑𝑦2
 

𝑛 
𝑑𝑥

𝑑𝑥2 + 𝑑𝑦2
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Potential Flow 
Stream function (2D) 

Rate of flow through ds: 

𝑑Ψ = − 𝑉 ⋅ 𝑛 𝑑𝑠 

And: 

𝑉 =
𝑢
𝑣

 

𝑛 =
1

𝑑𝑥2 + 𝑑𝑦2
−𝑑𝑦
𝑑𝑥

 

𝑑𝑠 = 𝑑𝑥2 + 𝑑𝑦2 

𝑑𝑠 

𝑑𝑥 

𝑑𝑦 

Abitrary line through fluid flow 

𝑥 

𝑦 

𝑛 

𝑉 
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Potential Flow 
Stream function (2D) 

𝑑Ψ = −
𝑢
𝑣
⋅
−𝑑𝑦
𝑑𝑥

 

𝑑Ψ = 𝑢𝑑𝑦 − 𝑣𝑑𝑥 

Rate of flow through ds: 

𝑑𝑠 

𝑑𝑥 

𝑑𝑦 

Abitrary line through fluid flow 

𝑥 

𝑦 

𝑛 

𝑉 
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Potential Flow 
Stream function (2D) 

Flow in y-direction: 

𝑑Ψ = −𝑣𝑑𝑥 
 

𝑑Ψ

𝑑𝑥
= −𝑣 

𝑑Ψ = 𝑢𝑑𝑦 − 𝑣𝑑𝑥 

     is the stream function 
 

Its value is constant on streamline: 
 
 
 
 

Ψ 

𝑑𝑠 

𝑑𝑥 

𝑑𝑦 

Abitrary line through fluid flow 

𝑥 

𝑦 

𝑛 

𝑉 Flow in x-direction: 

𝑑Ψ = 𝑢𝑑𝑦 
 

𝑑Ψ

𝑑𝑦
= u 

𝑑Ψ = 𝑢𝑑𝑦 − 𝑣𝑑𝑥 = 0 
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Potential Flow 
Stream function (2D) 

𝑥 

𝑦 

Streamline B 

ΔΨ𝐴→𝐵 = ∫𝐴
𝐵
− 𝑉 ⋅ 𝑛 𝑑𝑠

               = ∫𝐴
𝐵
𝑢𝑑𝑦 − 𝑣𝑑𝑥

= ∫𝐴
𝐵
𝑑Ψ    

                
           = Ψ 𝐵 − Ψ 𝐴

 

𝑑Ψ = 𝑢𝑑𝑦 − 𝑣𝑑𝑥 

𝐴 

𝐵 

𝑉 𝐴  
𝑉 𝐵  

Ψ 𝐴  Ψ 𝐵  

Streamline A 

Arbitrary line 

𝑑𝑠 

𝑉 𝑛 

𝑑Ψ

𝑑𝑥
= −𝑣     

𝑑Ψ

𝑑𝑦
= 𝑢 

Hence: 

Definition stream funtion: 
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Potential Flow 
Stream funtion (2D) 

•      is the (2D) stream function, with: 

 

 

 

• Difference of     between neighboring stream lines: rate of flow between 

streamlines 

𝑑Ψ

𝑑𝑦
= 𝑢 

𝑑Ψ

𝑑𝑥
= −𝑣 

Ψ 

Ψ 
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Potential flow properties 
Summary 

• Orthogonality: 
 
 

• Impervious boundaries equals streamline: 
 

 
• Conditions far away from disturbance: 

 
 

• Steady and unsteady flow: 
 
 
• Uniform flow (s coordinate along streamline): 

 
 

𝑑Ψ

𝑑𝑦
=
𝑑Φ

𝑑𝑥
= 𝑢 

𝑑Ψ

𝑑𝑥
= −
𝑑Φ

𝑑𝑦
= −𝑣 

𝑑Φ

𝑑𝑛
= 0 Ψ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑅 → ∞ ⇒ Φ → Φ∞ ∧ Ψ → Ψ∞ 

𝑑𝑉

𝑑𝑡
= 0,  

𝑑Φ

𝑑𝑡
= 0 

𝑑𝑉

𝑑𝑠
= 0 

60 



Potential flow elements 
Introduction 

• Using the previous we can define 'flow elements' 
 

• Building blocks that respect the assumptions of potential flow: 

• Homogeneous 

• Continuous 

• Inviscid 

• Incompressible 

• Irrotational 

 

• We can add these elements up to construct realistic flow patterns 
 

• Modeling of submerged bodies by matching streamlines to body outline 
 

• Using the velocity potential, stream function and Bernoulli equation to find 
velocities, pressures and eventually fluid forces on bodies 
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Potential flow elements 
Uniform flow 

Φ = 𝑈 ⋅ 𝑥 

Ψ = 𝑈 ⋅ 𝑦 

𝑢 =
𝑑Φ

𝑑𝑥
=
𝑑Ψ

𝑑𝑦
= 𝑈 

Φ = −𝑈 ⋅ 𝑥 

Ψ = −𝑈 ⋅ 𝑦 

𝑢 =
𝑑Φ

𝑑𝑥
=
𝑑Ψ

𝑑𝑦
= −𝑈 

𝑦 

𝑥 

𝑈 
𝑦 

𝑥 

−𝑈 
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Potential flow elements 
Source and sink flow 

Ψ = +
𝑄

2π
⋅ θ = +

𝑄

2π
⋅ arctan

𝑦

𝑥
 

Φ = +
𝑄

2π
⋅ ln𝑟 = +

𝑄

2π
⋅ ln 𝑥2 + 𝑦2 

𝑦 

𝑥 

θ 

𝑟 

𝑠𝑜 

𝑦 

𝑥 

θ 

𝑟 

𝑠𝑖 

Ψ = −
𝑄

2π
⋅ θ = −

𝑄

2π
⋅ arctan

𝑦

𝑥
 

Φ = −
𝑄

2π
⋅ ln𝑟 = −

𝑄

2π
⋅ ln 𝑥2 + 𝑦2 
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Potential flow elements 
Source and sink flow 

Ψ = +
𝑄

2π
⋅ θ 

Φ = +
𝑄

2π
⋅ ln𝑟 

𝑦 

𝑥 

θ 
𝑟 

𝑠𝑜 

𝑣𝑟 =
𝜕Φ

𝜕𝑟
=
1

𝑟
⋅
𝜕Ψ

𝜕θ
=
𝑄

2π𝑟
 

𝑣θ =
1

𝑟
⋅
𝜕Φ

𝜕θ
= −
𝜕Ψ

𝜕𝑟
= 0 
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Potential flow elements 
Circulation or vortex elements 

Ψ = +
Γ

2π
⋅ ln𝑟 

Φ = +
Γ

2π
⋅ θ 

𝑦 

𝑥 

θ 

𝑟 

Γ 

𝑣𝑟 =
𝜕Φ

𝜕𝑟
=
1

𝑟
⋅
𝜕Ψ

𝜕θ
= 0 

𝑣θ =
1

𝑟
⋅
𝜕Φ

𝜕θ
= −
𝜕Ψ

𝜕𝑟
=
Γ

2π𝑟
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Potential flow elements 
Circulation or vortex elements 

Ψ = +
Γ

2π
⋅ ln𝑟 Φ = +

Γ

2π
⋅ θ 

𝑦 

𝑥 

θ 

𝑟 

Γ 

𝑣𝑟 =
𝜕Φ

𝜕𝑟
=
1

𝑟
⋅
𝜕Ψ

𝜕θ
= 0 

𝑣θ =
1

𝑟
⋅
𝜕Φ

𝜕θ
= −
𝜕Ψ

𝜕𝑟
=
Γ

2π𝑟
 

Circulation strenght constant: 

Γ =  𝑣θ ⋅ 𝑑𝑠 = 2π𝑟 ⋅ 𝑣θ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Therefore: no rotation, origin singular point: velocity infinite 
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Superposition of potential flow 
elements 
Methodology (source in positive uniform flow) 

• The resulting velocity fields, potential fields or stream function 

fields may be simply superposed to find the combined flow 

patterns 

Uniform flow field Source flow field 

(Using stream function values) 
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Superposition of potential flow 
elements 
Methodology (source in positive uniform flow) 

• The resulting velocity fields, potential fields or stream function 

fields may be simply superposed to find the combined flow 

patterns 
(Using stream function values) 
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Superposition of potential flow 
elements 
Methodology (source in positive uniform flow) 

• The resulting velocity fields, potential fields or stream function 

fields may be simply superposed to find the combined flow 

patterns 
(Using stream function values) 
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Superposition of potential flow 
elements 
Sink in negative uniform flow 

• Besides graphically this works also with formulas: 

 

 

 

 

 

 

 

 

 

For instance: 

Find location stagnation  

point (Blackboard...) 

Ψ = −
𝑄

2π
⋅ arctan

𝑦

𝑥
− 𝑈∞ ⋅ 𝑦 

Φ = −
𝑄

2π
⋅ ln 𝑥2 + 𝑦2 − 𝑈∞ ⋅ 𝑥 
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Superposition of potential flow 
elements 
Separated source and sink 

Ψ𝑠𝑜𝑢𝑟𝑐𝑒 = +
𝑄

2π
⋅ θ1 = +

𝑄

2π
⋅ arctan

𝑦

𝑥1
 

2𝑠 

Ψ𝑠𝑖𝑛𝑘 = −
𝑄

2π
⋅ θ2 = −

𝑄

2π
⋅ arctan

𝑦

𝑥2
 

𝑥1 𝑥2 

Ψ =
𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
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Superposition of potential flow 
elements 
Separated source and sink in uniform flow 

Ψ =
𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
+ 𝑈∞𝑦 

𝑠 𝑠 
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Superposition of potential flow 
elements 
Separated source and sink in uniform flow 

Streamline resembles fixed boundary (Rankine oval) 

The flow outside this streamline resembles flow around solid boundary with this shape 

Shape can be changed by using more source-sinks along x-axis with different 

strenghts 

𝑠 𝑠 
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Superposition of potential flow 
elements 
Separated source and sink in uniform flow 

This approach can be extended to form ship forms in 2D or 

3D: 

  Rankine ship forms 

 

Useful for simple flow computations 

𝑠 𝑠 
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Superposition of potential flow 
elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
 

Ψ = lim
𝑠→0

𝑄

π
𝑠 ⋅

𝑦

𝑥2 + 𝑦2 − 𝑠2
 

Note: in book errors w.r.t. to doublet and 

its orientation! 

𝑠 𝑠 
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Superposition of potential flow 
elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Set constant:                 μ =
𝑄

π
𝑠 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
 

Ψ = lim
𝑠→0

𝑄

π
𝑠 ⋅

𝑦

𝑥2 + 𝑦2 − 𝑠2
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Superposition of potential flow 
elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Set constant:                 

Disappears when:                 𝑠 → 0 

μ =
𝑄

π
𝑠 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
 

Ψ = lim
𝑠→0

𝑄

π
𝑠 ⋅

𝑦

𝑥2 + 𝑦2 − 𝑠2
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Ψ = μ ⋅
𝑦

𝑥2 + 𝑦2
= μ ⋅
sinθ

𝑟
 

Superposition of potential flow 
elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Φ = −μ ⋅
𝑥

𝑥2 + 𝑦2
= −μ ⋅

cosθ

𝑟
 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
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Superposition of potential flow 
elements 
Doublet in a uniform flow 

Φ = −μ ⋅
𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

Φ = −μ ⋅
cosθ

𝑟
− 𝑈∞𝑟cosθ 

Ψ = μ ⋅
𝑦

𝑥2 + 𝑦2
− 𝑈∞𝑦 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 

Doublet pointing in positive x-direction, uniform flow in negative x-

direction: 

+ 

Wrong in book! 
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Superposition of potential flow 
elements 
Doublet in a uniform flow 

Ψ = μ ⋅
𝑦

𝑥2 + 𝑦2
− 𝑈∞𝑦 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 

Set            then: 

Ψ = 𝑦
μ

𝑥2 + 𝑦2
− 𝑈∞ = 0 

Ψ = 0 True when: 

𝑦 = 0 

μ

𝑥2 + 𝑦2
− 𝑈∞ = 0 𝑥2 + 𝑦2 =

μ

𝑈∞
 

Φ = −μ ⋅
𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

Φ = −μ ⋅
cosθ

𝑟
− 𝑈∞𝑟cosθ 
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• The radius of the circle: 

 

 

 

• Doublet strength needed for radius R: 

 

 

 

• This yields the following: 

Superposition of potential flow 
elements 
Doublet in a uniform flow: flow around a circle 

𝑅 =
μ

𝑈∞
 

μ = 𝑈∞𝑅
2 

Φ = −
𝑈∞𝑅

2cosθ

𝑟
− 𝑈∞𝑟cosθ = 𝑅𝑈∞

𝑅

𝑟
−
𝑟

𝑅
cosθ 

Ψ =
𝑈∞𝑅

2sinθ

𝑟
− 𝑈∞𝑟sinθ = 𝑅𝑈∞

𝑅

𝑟
−
𝑟

𝑅
sinθ 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 

Φ = −μ ⋅
cosθ

𝑟
− 𝑈∞𝑟cosθ 
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Superposition of potential flow 
elements 
Doublet in a uniform flow: flow around a circle 

Φ = −𝑅𝑈∞
𝑅

𝑟
−
𝑟

𝑅
cosθ 

Φ = −𝑈∞𝑅
2 ⋅
𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑥2 − 𝑦2

𝑥2 + 𝑦2
2 − 𝑈∞ 
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Superposition of potential flow 
elements 
Doublet in a uniform flow: flow around a circle 

𝑥 = ±𝑅, 𝑦 = 0 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑅2 − 02

𝑅2 + 02
2 − 𝑈∞ = 𝑈∞𝑅

2
𝑅2

𝑅4
− 𝑈∞ = 0 

Φ = −𝑅𝑈∞
𝑅

𝑟
−
𝑟

𝑅
cosθ 

Φ = −𝑈∞𝑅
2 ⋅
𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑥2 − 𝑦2

𝑥2 + 𝑦2
2 − 𝑈∞ 

Stagnation 

points! 
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Superposition of potential flow 
elements 
Doublet in a uniform flow: flow around a circle 

𝑥 = 0,  𝑦 = ±𝑅 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
02 − 𝑅2

02 + 𝑅2
2 − 𝑈∞ = −𝑈∞𝑅

2
𝑅2

𝑅4
− 𝑈∞ = −2𝑈∞ 

Φ = −𝑅𝑈∞
𝑅

𝑟
−
𝑟

𝑅
cosθ 

Φ = −𝑈∞𝑅
2 ⋅
𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑥2 − 𝑦2

𝑥2 + 𝑦2
2 − 𝑈∞ 
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Superposition of potential flow 
elements 
Evaluate velocities on cylinder wall 

• Generally, velocity on cylinder wall: 

𝑣θ 𝑟 = 𝑅 = −
𝜕Ψ

𝜕𝑟
𝑟=𝑅

= −
𝜕

𝜕𝑟

𝑈∞𝑅
2sinθ

𝑟
− 𝑈∞𝑟sinθ =. . . = −2𝑈∞sinθ 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 
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Superposition of potential flow 
elements 
Evaluate pressures on cylinder wall 

• Use the Bernoulli equation: 

 

 

 

 

 

 

 

 

 

 

 

• Result: 

1

2
ρ𝑈∞
2 + 0 = 𝑝 +

1

2
ρ𝑣θ
2 

Pressure at stagnation points: 

 

 

 

Assuming constant elevation 

Pressure at cylinder boundary: 

𝑣 = 0 𝑣𝑟 = 0 

𝑣θ = −2𝑈∞sinθ 

𝑝 =
1

2
ρ𝑈∞
2 1 − 4sin2θ  
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Superposition of potential flow 
elements 
Evaluate pressures on cylinder wall 

• Velocity profile: 

 

• Pressure profile: 

 

 

𝑣θ = −2𝑈∞sinθ 

𝑝 =
1

2
ρ𝑈∞
2 1 − 4sin2θ  

stagn.pt stagn.pt 

stagn.pt 
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Superposition of potential flow 
elements 
Evaluate pressures on cylinder wall 

• Velocity profile: 

 

• Pressure profile: 

 

 

𝑣θ = −2𝑈∞sinθ 

𝑝 =
1

2
ρ𝑈∞
2 1 − 4sin2θ  

stagn.pt stagn.pt 

stagn.pt 

•No net resulting force!!! 

•D'Alembert's Paradox 
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Superposition of potential flow 
elements 
Pipeline near seabed 

• How to calculate the flow around a pipeline near the seabed? 

𝑦0 

𝑦 
𝑈∞ 
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Superposition of potential flow 
elements 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition of potential flow 
elements 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

 

• Result is zero normal 

flow on seabed 
𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition of potential flow 
elements 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

 

• Result is zero normal 

flow on seabed 

 

 

 

• Is flow exactly right? 

𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition of potential flow 
elements 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

 

• Result is zero normal 

flow on seabed 

 

 

 

• Is flow exactly right? 
NO: interaction  

cylinders not modeled! 

𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition of potential flow 
elements 
Circulation 

• Add circulation (or vortex flow element) 

• Resulting velocity field: 

𝑈∞ 

θ 

𝑟 

Γ + + 
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Superposition of potential flow 
elements 
Circulation 

• Add circulation (or vortex flow element) 

• Resulting velocity field: 
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Superposition of potential flow 
elements 
Circulation 

• Add circulation (or vortex flow element) 

• Resulting velocity field: 
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Superposition of potential flow 
elements 
Circulation 

• Add circulation (or vortex flow element) 

• Resulting velocity field: 

- 

+ 
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Superposition of potential flow 
elements 
Circulation 

• Now integration of pressure yields a net force perpendicular to the 

undisturbed flow direction: the lift force 

 

• However: still no net force in the flow direction: no drag 
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Sources images 

All images are from the book  Offshore Hydromechanics  by Journée and Massie. 
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