Offshore Hydromechanics Part 2

Ir. Peter Naaijen
3. Linear Potential Theory


```
    Teacher module II
    - Ir. Peter Naaijen
    - p.naaijen@tudelft.n
    - Room 34 B-0-360 (next to towing tank)
```

 Book:
 - Offshore Hydromechanics, by J.M.J. Journee \& W.W.Massie
 Useful weblinks
 ww.shipmotions.nl
 - Blackboard
 TUUDelf:
E4630 2012-2013, Offshore Hydromechanics, Part 2

Lecture notes:		
- Disclaimer: Not everything you (should) learn is in the lecture notes (lees: niet alles wat op het tentamen gevraagd kan worden staat in diktaat...) -7		
Make personal notes during lectures!!		
- Don't save your questions 'till the break -7		
Ask if anything is unclear		
TUDelft	OE4630 2012-2013, Offshore Hydromechanics, Part2	5
Marine Engineering, Ship Hydromechanics Section		

Learning goals Module II, behavior of floating bodies in waves	
- Definition of ship motions Motion Response in regular waves: - How to use RAO's - Understand the terms in the equation of motion: hydromechanic reaction forces, wave exciting forces - How to solve RAO's from the equation of motion Motion Response in irregular waves: -How to determine response in irregular waves from RAO's and wave spectrum without forward speed	
3D linear Potential Theory -How to determine hydrodynamic reaction coefficients and wave forces from Velocity Potential - How to determine Velocity Potential	
Motion Response in irregular waves: - How to determine response in irregular waves from RAO's and wave spectrum with forward speed - Make down time analysis using wave spectra, scatter diagram and RAO's	8
Structural aspects: - Calculate internal forces and bending moments due to waves	
Nonlinear behavior: - Calculate mean horizontal wave force on wall - Use of time domain motion equation	ch. 6
TUDOEft OE4630 2012-2013, Offshore Hydromechanics, Part 2 Marine Engineering, Ship Hydromechanics Section	

Marine Engineering, Ship Hydromechanics Section

Motions of and about COG

1 Surge（schrikken）：$x x_{a} \cos t$
2 Sway（verzetten）：y $y_{a} \cos t$
3 Heave（dompen）：$z z_{a} \cos t$
4Roll（rollen）：〈phi〉 ${ }_{a} \cos { }^{t}$
5 Pitch（stampen）：〈theta〉 ${ }_{a} \cos$
6 Yaw（gieren）：〈psi〉 ${ }_{a} \cos { }_{c}{ }^{t}$
Frequency of input（regular wave）and output（motion）is ALWAYS THE SAME ！
Phase can be positive ！（shipmotion ahead of wave elevation at COG
Due to symmetry：some of the motions will be zero
Ratio of motion amplitude $/$ wave amplitude $=$ RAO（Response Ampilude Operator）
RAO＇s and phase angles depend on wave frequency and wave direction
RAO＇s and phase angles must be calculated by dedicated software or measured by experiments
Only some special cases in which＇common sense＇is enough：

TUDelft
OE4630 2012－2013，Offshore Hydromechanics，Part 2

Moving ship in waves: Analogy / differences with massspring system:			
		ner	Depend on frequency !
External force	F(t)	Wave exciting force Has aphase angle $w r t$ undisturbed wave at coc	
restoring force	$\mathrm{c}^{*} \mathrm{z}$	Archimedes: bouyancy	
Damping force	b*dz/dt	Hydrodynamic damping	
Inertia force	$\mathrm{M} * \mathrm{~d}^{2} / \mathrm{dt}{ }^{2}$	Mass + Hydrodynamic Mass	
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID			49

Right hand side of m.e.:
Wave Exciting Forces

- incomıng: regular wave with given trequency and propagation direction
- Assuming the vessel is not moving

Back to Regular waves

regular wave propagating in direction μ

$$
\zeta(t, x)=\zeta_{,} \cos (\omega t-k x \cos \mu-k y \sin \mu)
$$

Linear solution Laplace equation
Linear solution Laplace equation
In order to calculate forces on immerged bodies:
What happens underneath free surface?

TUD
TUDelft: OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 54

Potential Theory
Navier-Stokes vergelijkingen:

Most complete mathematical description of flow is viscous Navier-Stokes equation:

This results in continuity equation:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
$$

From definition of velocity potential:

$$
u=\frac{\partial \Phi}{\partial x}, v=\frac{\partial \Phi}{\partial v}, w=\frac{\partial \Phi}{\partial z}
$$

Substituting in continuity equation:

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \\
\text { Results in Laplace equation: } \\
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0
\end{gathered}
$$

Summary

- Potential theory is mathematical way to describe flow

Important facts about velocity potential function Φ

- definitinn. $\boldsymbol{\sigma}$ is a functinn whoce derivative in anv dirertion enulalc the flow velocity in that direction
- Φ describes non-viscous flow
- Φ is a scalar function of space and time (NOT a vector!)

TUUDelft
OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

Summary

Velocity potential for regular wave is obtained by
Solving Laplace equation satisfying:

1. Seabed boundary condition
2. Dynamic free surface condition

$$
\begin{aligned}
& \Phi(x, y, z, t)=\frac{\zeta_{a} g}{\omega} \cdot e^{k z} \cdot \sin (k x \cos \mu+k y \sin \mu-\omega t) \\
& \Phi(x, y, z, t)=\frac{\zeta_{a} g}{\omega} \cdot \frac{\cosh (k(h+z))}{\cosh (k h)} \cdot \sin (k x \cos \mu+k y \sin \mu-\omega t) \\
& \text { 3. } \begin{array}{l}
\text { Kinematic free surface boundary condition results in: } \\
\text { Dispersion relation }= \\
\begin{array}{l}
\text { relation between wave } \\
\text { frequency and wave length }
\end{array}
\end{array} \\
& \omega^{2}=k g \tanh (k h)
\end{aligned}
$$

Water Particle Kinematics

trajectories of water particles in infinite water depth
$\Phi(x, y, z, t)=\frac{\zeta_{a} g}{\omega} \cdot e^{k z} \cdot \sin (k x \cos \mu+k y \sin \mu-\omega t)$

Water Particle Kinematics
trajectories of water particles in finite water depth
$\Phi(x, y, z, t)=\frac{\zeta_{a} g}{\pi} \cdot \frac{\cosh (k(h+z))}{r n \operatorname{ch}(k h)} \cdot \sin (k x \cos \mu+k y \sin \mu-\omega t)$

Left hand side of m.e.:

Hydromechanic reaction forces

- NU incoming waves.
- Vessel moves with given frequency

left hand side: reaction forces

Determine added mass and damping
Experimental procedure:

Oscillate model i.e. impose known harmonic motion, 2	$\begin{aligned} & \text { Measure required } \\ & \text { force, } F_{\text {oscillation }} \end{aligned}$	Subtract known reaction forces from measured $\mathrm{F}_{\text {oscillation }}$
		Split remainder into damping and added mass coefficient

$(m+a): . z+b: z+c \cdot z=F_{\text {oscillation }}$

Equation of motion

$(m+a): z+b: z+c \cdot z=F_{W}$
Hydrodynamic coefficients:

$$
\begin{aligned}
& \text { Calculating hydrodynamic coeffiecients } \\
& \text { added mass and damping } \\
& (m+a): . z+b: z+c \cdot z=F_{W}
\end{aligned}
$$

$a=$ added mass coefficient= force on ship per $1 \mathrm{~m} / \mathrm{s}^{2}$ acceleration \rightarrow
a * acceleration $=$ hydrodynamic inertia force
$\mathrm{b}=$ damping coefficient= force on ship per $1 \mathrm{~m} / \mathrm{s}$ velocity \rightarrow $b *$ velocity $=$ hydrodynamic damping force

Moving ship in waves:
Not in air but in water!

Equation of motion
$(m+a): z+b: z+c \cdot z=+F_{F K}+F_{D}=F_{W}$
To solve equation of motion for certain frequency:

- Determine sorina coefficient:
$\mathrm{c} \rightarrow$ follows from geometry of vessel
- Determine required hydrodynamic coefficients for desired frequency:

$$
\mathrm{a}, \mathrm{~b} \rightarrow \text { computer / experiment }
$$

- Determine amplitude and phase of F_{w} of regular wave with amplitude $=1$ Computer / experiment: $F_{w}=F_{\text {wes }} \cos \left(\omega t+\varepsilon_{w, w}\right)$
- As we consider the response to a regular wave with frequency ω : Assume steady state response: $z=z_{\mathrm{a}} \cos \left(\omega t+\varepsilon_{2,5}\right)$
and substitute in equation of motion:

Ship motion : heave

$(m+a): z+b: z+c \cdot z=F_{w}$
$\bar{F}=-\iint_{S}(p \cdot \bar{n}) d S$
$p=-\rho \frac{\partial \Phi}{\partial t}$
$\bar{M}=-\iint_{S} p \cdot(\bar{r} \times \bar{n}) d S$
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part2 SESSION ID

Equation of motion

$(m+a): z+b: z+c \cdot z=F_{w}$
$z=z_{a} \cos \left(\omega t+\varepsilon_{z, \zeta}\right)$
$. z=-z_{a} \omega \sin \left(\omega t+\varepsilon_{z, \zeta}\right)$
$. . z=-z \omega^{2} \cos \left(\omega t+\varepsilon_{z, t}\right)$
$\left(c-\omega^{2}(m+a)\right) \cdot z_{a} \cos \left(\omega t+\varepsilon_{z, \zeta}\right)+b \cdot-z_{a} \omega \sin \left(\omega t+\varepsilon_{z, \zeta}\right)=F_{W a} \cos \left(\omega t+\varepsilon_{F_{\omega}, \zeta}\right)$

Now solve the equation for the unknown motion amplitude z_{a} and phase angle $\varepsilon_{z, 5}$

Calculating hydrodynamic coeffiecients and diffraction force$\begin{aligned} & (m+a): z+b: z+c \cdot z=F_{\mathrm{W}}=F_{F K}+F_{n} \\ & \mathrm{~m} \text { and } \mathrm{c}=\text { piece of cake } \\ & \mathrm{F}_{\mathrm{FK}}=\text { almost easy } \\ & \mathrm{a}, \mathrm{~b}, \text { and } \mathrm{F}_{\mathrm{D}}=\text { kind of difficult } \longrightarrow \mathrm{Ch} .7 \end{aligned}$

$$
\begin{aligned}
& \text { Calculating hydrodynamic coeffiecients and diffraction } \\
& \text { force } \\
& m:: z=\sum F=F_{23}+F_{w 3}+F_{d 3}+F_{s 3} \\
& \text { Radiation Force: } \quad F_{r 3}=-a_{3}: z-b_{3}: z
\end{aligned}
$$

To calculate force: first describe fluid motions due to given heave motion by means of radiation potential:

Potential theory

Radiation potential $\quad(m+a): z+b: z+c \cdot z=F_{w}+F_{d}$
Radiation potential heave $\Phi_{3}(x, y, z, t)$
= flow due to heave motion
Knowing the potential, calculating resulting force is straight forward:

$$
\begin{aligned}
& \bar{F}=-\iint_{S}(p \cdot \bar{n}) d S \\
& \bar{M}=-\iint_{S} p \cdot(\bar{r} \times \bar{n}) d S \\
& p=-\rho \frac{\partial \Phi}{\partial t} \\
& \left.\left.\begin{array}{l}
\left.\bar{M}=\iint_{S}\left(\rho \frac{\partial \Phi}{\partial t} \cdot \bar{n}\right) \right\rvert\, \\
\hline \text { TUU }
\end{array}\right\} \begin{array}{l}
\\
\hline
\end{array}\right\} \frac{\partial \Phi}{\partial t} \cdot(\bar{r} \times \bar{n}) d S \\
& \hline
\end{aligned}
$$

Potential theory
Radiation potential
Solution: radiation potential is written as function of velocity of the motion

suppose we would know the velacity potentia due to neave motion: ©

TUDelft OE4630 2012-2013, Offshore Hydromechanics, Pait2 SES SSIONID
102

TUDelft
OE4630 2012-2013, OHfshore Hydromechanics, Part 2 SESSION ID
103

Potential theory

Potential theory

OE4630 2012-2013, Offshore Hydromechanics, Part2 SESSION ID 111
Marine Engineering, Ship Hydromechanics Section

Sources images

[1] Towage of SSDR Transocean Amirante, source: Transocean
[2] Tower Mooring, source: unknown
[3] Rogue waves, source: unknown
[4] Bluewater Rig No. 1, source: Friede \& Goldman, LTD/GNU General Public License
[5] Source: unknown
[6] Rig Neptune, source: Seafarer Media
[7] Pieter Schelte vessel, source: Excalibur
[8] FPSO design basis, source: Statoil
[9] Floating wind turbines, source: Principle Power Inc.
[10] Ocean Thermal Energy Conversion (OTEC), source: Institute of Ocean Energy/Saga University
[11] ABB generator, source: ABB
[12] A Pelamis installed at the Agucadoura Wave Park off Portugal, source: S.Portland/Wikipedia
[13] Schematic of Curlew Field, United Kingdom, source: offshore-technology.com
[14] Ocean Quest Brave Sea, source: Zamakona Yards
[15] Medusa, A Floating SPAR Production Platform, source: Murphy USA

