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Learning goals. The student:

» Can select and calculate a single axis functional electromagnetic actuator for
a given specification, working according to the Lorentz or reluctance force
generation principle.
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b—A Permanent Magnets  Ferromagnetic yoke
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Ohm’s law, the definition of
impedance
Current (/) V—IR [= V
+ Voltage R
() Power in Watt (W):
Impedance )2
5 @ P=1V=I"R=—
_ ource R
Complex impedance Z(f)
V(f)
VN =INZ(f) I(f)=-"7
Z(f)
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Rules of Kirchhoff (network theory)

1. At any node of an electronic circuit all currents add to zero.
*  No charge storage in a node
2. Following any loop in an electronic circuit all voltages add to

zero.
I
-
C“)V I +1,+1,=0
[ toop V,+V,+V,=0
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Combination of Impedances

Serial v,
*Current is shared, v,

*Voltage is divided
& {7z {7z }+ »

serial 4 U
Z,= AL " v,
11 1[ I, "
=ItZI+1tZZ -7 17 = { 4 | > — Z .
It 1 2 1 Z: j=
parallel L
Parallel
*Voltage is shared 7 = n = 4 = 4 = 1
P
scurrent is divided I L+, Vi +K 1,1
zZ Z, Z, Z,
‘ Delft . . 6
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A voltage divider

|/1= [ gl

Z+Z, b
vz C)Vi Il Z\ | Ve
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One of the oldest electromotors
The Elias motor of 1842

3
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Definition of terms in Maxwell’s
equations
E = Electric field [Vim]
J = Electric current density [Am?]
q = Electric charge [C]
ep = electric permittivity in vacuum [AsVm]
pq = Electric charge density [Cm™]
B = Magnetic field [T]
B = Magnetic flux density [T]
@ = Magnetic flux W1
= Magnetic permeability [VsiAm]
H = Magnetizing field [Am]
H = Magnetic field strength [A/m]
& . . 9
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Maxwell equations for magnetics
Gauss law (magnetic):
ﬁlB-iﬂ ds=0
s
divB=V-B=0
E = Electrie field [Vim] .
= Electri nt densi Am?
J = Electric current density [Am~] Faraday’s law:
q = Electric charge IC]
ep = electric permittivity in vacuum [AsVm] fE cdl = _i ff{B .n)dS
py = Eleetric charge density [CGm?] 7 dt 3
B = Magnetic field [T] {E=VxE a B
B = Magnetic flux density [T] POEE TR
& = Magnetic flux [W1]
1 = Magnetic permeability [VsAm] Ampeére’s law:
H = Magnetizing field [A/m] d
H = Magnetic field strength [Am] %B rdl=pol +e "‘”“E ff (E-m)dS
L K
a
rotB=VxB=uJ+ EDPDEE
& e . . 10
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Gauss Law, magnetic fieldlines are
closed loops

» A magnetic field has its origin
in a dipole, North and South
pole

» Density of fieldlines is
proportional to flux density

5
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Faraday’s law, a changing magnetic
field causes an electric field over a wire

d .
jfE-dlz——ff(B-n)ds dlis cmmmrm =

dt xe T ~. L
L s / Ln =

\
Bilse, ©
The line-integral of the electrical o -~
field over a closed loop L equals the
change of the flux through the open
surface S bounded by the loop L.
This is a voltage source (EMF),

where the current is driven in the
direction of the electric field.

5
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Ampere’s law, Current through a
wire gives a magnetic field

Not relevant for +
electromagneltic actuators

i 1
d B
fB- d/ :;.LOI+EO,uOEf (E-n)dS
L S
The line-integral of the magnetic field
over a closed loop L is proportional -
to the current through the surface S B(x) = ol
enclosed by the loop L 27x
(plus a surface-integral term related H(x) = B(x)_ I
to electric fields) Hy 27mx
sy = 47107 [Vs/Am]
in vacuum/air
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The magnetic field of more current

carrying WiI'eS Current directed
towards observer

The total magnetic field is a linear vectorial combination of the
magnetic field from each separate winding.

x
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Average magnetic field from a coil

_
Bw,av =K h
c L4
H = B, _ P nl southpole 1B i:——:H—— Northpole
wav — AT E— i
IUO hc <<_-—-—_—.—-—~E
~03<k<l n windings
—
7
Infinitely long coil: x =1 N_S
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Hopkinson’s law of magnetics vs
Ohm’s law on electricity

Magnetomotive force (F,) vs Electromotive force = Voltage (F, = V')
Magnetic flux (®) vs electric current (/)
Magnetic reluctance (R) vs electrical resistance (R)

* The Magnetomotive force is the amount
of windings times the current

¢ The reluctance is proportional to the Vi
average length of the flux-path and R=—"2

inversely proportional to cross-section uA
times the magnetic permeability. —— ‘

* The magnetic flux follows Hopklnson s law
of magnetics nl
R
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The magnetic flux generated inside a coil
) F. nl

B av: W: m =
T4 AR AR
R=R +R, = b b 6 (r03<x<1)

Apy Apy B KA 1

This approximates to:

1
Ban::uonav = Kluon
H 3 gl
=l
| l

Righthand rule: North
and Southpole

17

Magnetic energy

The energy equals the integral of B*¥*H , which are connected by £,

E, =[] Bj HABAV [J]

V, By,
-2 5 g -] [ Basav
Hy o0 Ho

Applying some relations like V, = Aq,éy and Hopkinson’s law:

‘. B,

Vde:T [ada,  [HAr=F -0R, [ TszdeTdcp
Y 04, 0 4y 0 0

Results in :
Ben % O 1 17
E,=|[[ | HdBAV = [ 7 d0 = [ ORAD = —DIR £ ="—
V, 0 0 0 2 2R
z e . . 18
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Adding a ferromagnetic material
reduces the reluctance

F.=nl
ferromagnetic yoke R = Y
ILlO:urAy
o o Fa_ Attt
Y A ‘.

B — % — /’IO/’lrnI =

AT
B

nl
— w —
Hy ==
/’l()/'lr y
With a large U, the flux
increases
.3 o . . 19
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Magnetisation curve of ferromagnetic
material (p, > 1)
TB‘” Saturation
BW_IUOIUIHW Bw=ﬂ0Hw
In vacuum or air H, ()
With ferromagneticcore_~" | _._cocommemime T T
Satoranon
7 e . . 20
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A permanent magnet is a ferromagnetic
material with a high hysteresis

Area of
interest

3
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PM materials act like a current
carrying coil
Without an external field the magnet B,
creates its own field as if it was a coil in
air T
B/l B
fm = n[ equivalent =H cgm =
lu01ur,m
Modern PM .= 1 H, H
B/Y B_=1Tis equivalent to
=nl_. =H/ =—1t=n r a
P equivalent A 800000 Amp turns
per meter length of magnet
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Use a permanent magnet to create a
magnetic field in an airgap.

The magnetic flux in
the magnet equals:

+
Ay[mlur Agﬁm

4
. y Arng
i y
l, In practicep, > Agm
__B4,
o = A
l f——| 1+A£
¢, l, ot

But the flux in the air gap is smaller because magnetic
flux is lost outside the air gap by “fringe/stray flux”.
Air is “conductive” for magnetic fields.

F B 7
(I) . — m — T m
| g "l R Ho R
ln e,
/ l l B A
mt — m_ y + g q q)m — - m
Antly  Aypiott, Agtly g by Aty
.3 . . 23
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Practical approximation
B.4,
(ONRE s
AL, A

x
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The fringe flux takes in practice
between 25 to 75% of the total flux!
‘" A1=1-loss
1.5 cDg:BgAg:ﬂ’.q)m
~025<41<~0.75
o If A=A, and(, =1,
g AP, _ A, IB AB, )
= = —" = B
¢ Ag Ag 1 + % i + gig Bg = 2 !
4,0, A, L,
5 _ _
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Flat magnets have less fringe flux
and pole pieces are not efficient!

x
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Concentration of flux by iron parts

Ay >> 4y
B, (~0,7T) > B, (~0,4T)
Much fringe flux !
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*Electromagnetic actuators

*Lorentz actuator
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With the field in the airgap an actuator can be
made with a current wire inserted in the gap

Lorentz Force on a charged particle

F = g(E+VvxB)

where

*F is the vectorial force (in Newton)

°E is the electric field (in Volts per meter)

*B is the magnetic field (in Tesla)

«q is the electric charge of the particle (in coulombs)

*v is the instantaneous velocity of the particle (in meters per second)
*and x is the cross product.

z
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For the magnetic force on a current this

The Lorentz Force with  ¢q-v =1
F=BIl_sina F

o, = the angle between the current
and the magnetic field

relation leads to
v\ N

|

£ = length of the wire in the field
Corkscrew rule due to
cross product
- . . 30
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Formulate the Lorentz force differently to
avoid mistakes

The Lorentz Force

F=BIl sna
Can also be written as : (a = 7/2)
dd
F=I——7~
dx . .
For multiple windings this becomes
Because dd
dd F=nl——~
Y =B/l dx
dx n =number of windings
@, = flux per winding
.3 e . . a1
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A first example, a flat Lorentz
actuator

Permanent Magnets
Ferromagneticyoke

MagneticField

Flatwound coil

32
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Efficiency of a flat Lorentz
actuator

Permanent Magnets
Ferromagneticyoke

Flatwound coil

Detail A

x
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Importance of dd,,/dx,
risk of non functional actuator

Permanent Magnets

Ferromagneticyoke

MagneticField

Flat wound coil

There should be motion between coil and permanent
magnetic field.

The force acts between the current and the source of the
magnetic field.

x
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Extending in the x direction

Permanent Magnets Coil

Ferromagneticyoke

Useless windings

'?U Delft s WB2414-Mechatronic System Design 2013-2014

Extending in the y direction
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The loudspeaker (moving coil) motor

FA Permanent Magnets Ferro:magnetic yoke

AiA

37
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Limited range
na AR n @

h, ©

Stiffness!

a: under hung (u} b: over hung (o}

'?U Delft s WB2414-Mechatronic System Design 2013-2014 38




Commutation of the coils

__L____L*_L__.___.

Bamy

ey e AN
'..;"T_"T___T__—T_"_'

x
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Three phase force with switching at
zero-crossings (mechanical
commutation)

¥

TRV VA VL Vi T RV VA Vi

F=BI{ [N] ——

1
&
n

-1

Position —

x
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Three phase force with sinusoidal
currents

o000
NA DD R

o

B{[N\A] —»
[A] ===

11
co
w o

Position ———»
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*Variable reluctance actuator
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A Lorentz actuator also has some

Ferromagnetic (iron) part

non-linear reluctance force

e Reluctance force is force on the
coil without the permanent

Flux from the coil magnets

e The flux by the current in the coil
will pull the coil in the iron

¢ This force is unidirectional and
depending on the position

= Stiffness!

z
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Ultimate solution. Avoid iron!

Non-ferromagnetic material
e Remove the iron and use more
magnet material. (Higher cost!)

* Reluctance of outer path is
same order of magnitude as the
.. reluctance of the gap between
the magnets (Larger flux path
and larger cross-section)

3
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Variable reluctance actuator
mover
X
dx
Ag Ag gg Force based on energy balance
Energy stored in magnetic field
2
stator F=_ i’l_I Agll'lo
l 4
g
I I
7 o . . 45
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Application of variable reluctance
actuator, the current relay
switch

e Avalanche effect

* Elastic hinge is pre-strained

Elastic hinge i )
 Current rises until mover starts

to move

¢ Resulting higher force speeds
up movement

* Strong and fast connection of
electric contacts

x
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Force of magnetic field to ferromagnetic
material

47

The relation for attraction force is
only valid for reluctance force

B4
Fa—_% & Two permanent magnets will attract or repel each other.
yx This is linear force related to the Lorentz force
3
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