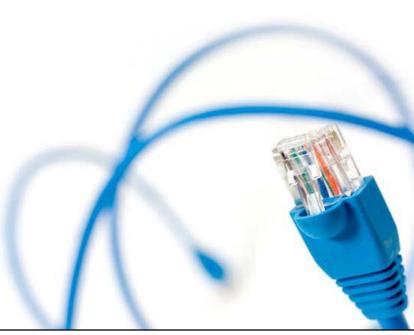
Traffic Flow Theory & Simulation

S.P. Hoogendoorn

Lecture 3 Fundamental diagram



1.

Traffic Flow Variables

Overview of variables

	Local measurements	Instantaneous measurements	Generalized definition (Edie)
Variable	Cross-section x Period T	Section <i>X</i> Time instant <i>t</i>	Section X Period T
Flow q (veh/h)	$q = \frac{n}{T} = \frac{1}{\overline{h}}$	q = ku	$q = \frac{\sum_{i} d_{i}}{XT}$
Density <i>k</i> (veh/km)	$k = \frac{q}{u}$	$k = \frac{n}{X} = \frac{1}{\overline{s}}$	$k = \frac{\sum_{j} r_{j}}{XT}$
Mean speed <i>u</i> (km/h)	$u_L = \frac{n}{\sum_i (1/v_i)}$	$u = \frac{\sum_{j} v_{j}}{n}$	$u = \frac{q}{k}$

2.

Macroscopic flow characteristics

Fundamental Diagram

Overview of lecture

- Fundamental relation (recall)
- Fundamental diagrams
 - Causality
 - Special points
 - Model alternatives
- Studies of the fundamental diagram
 - Effect of weather conditions
- Applications
 - Capacity estimation
 - Effect of rain

Fundamental relation

• Consider traffic flow in stationary + homogeneous state; then

q = ku

- Which average speeds are to be used? Local (time-mean speed) or instantaneous (space-mean speed)?
- Recall: consider group *i* with constant speed u_i (per group: $u_L = u_M$)
- Density of group on X equals k_i
- For each group $q_i = k_i u_i$, and thus

$$q = \sum_{i} q_{i} = \sum_{i} k_{i} u_{i}$$
 and $k = \sum_{i} k_{i} = \sum_{i} (q_{i} / u_{i})$

yielding

$$u = \frac{q}{k} = \frac{\sum_{i} k_{i} u_{i}}{\sum_{i} k_{i}} = \frac{\sum_{i} q_{i}}{\sum_{i} q_{i} / u_{i}} = u_{M}$$

- Assumptions:
 - On average drivers behave the same under similar stationary conditions
 - E.g. when drivers have a certain speed v, they will on average maintain the same following distance s
- Example vehicle *i* follows vehicle i-1 at distance headway s_i

$$s_i = s_i^0 + T_i v_i \quad \Leftrightarrow \quad h_i = s_i^0 / v_i + T_i$$

- Distance headway increases as speed increases since driver needs more space to ensure not colliding with the vehicle in front in case of an unexpected situation
- For averages we have

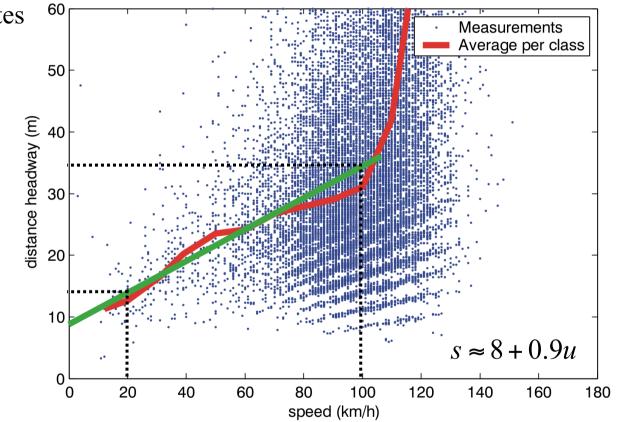
$$\frac{1}{k} = \overline{s} = \frac{1}{m} \sum s_i = \frac{1}{m} \sum \left(s_i^0 + T_i v_i \right) = \overline{s_0} + Tu$$

• How about data?

Data collected at A9 motorway (left lane)

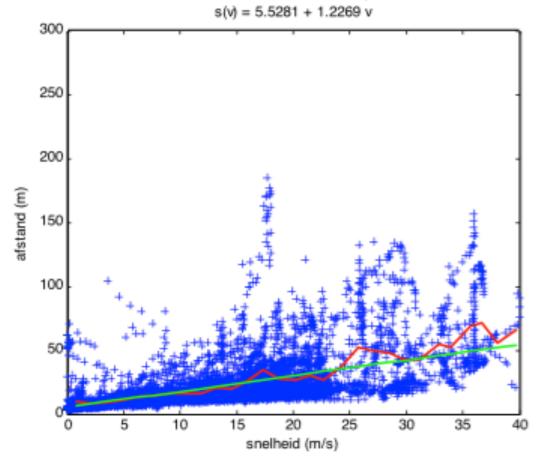
- A9 motorway data
- Green line indicates
 'fitted' linear
 relation between
 s and u
- Much scatter due to differences between vehicles and within driver behaviour, nonstationarity, etc.

02/09/2010



Data from Full Traffic project

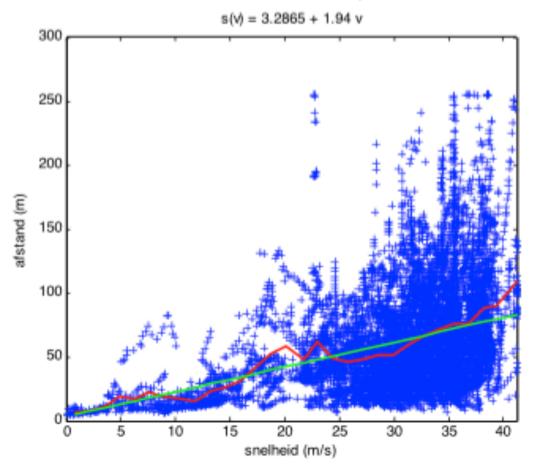
Instrumented vehicles (net distance headways)



02/09/2010

Data from Full Traffic project

Instrumented vehicles (net distance headways)



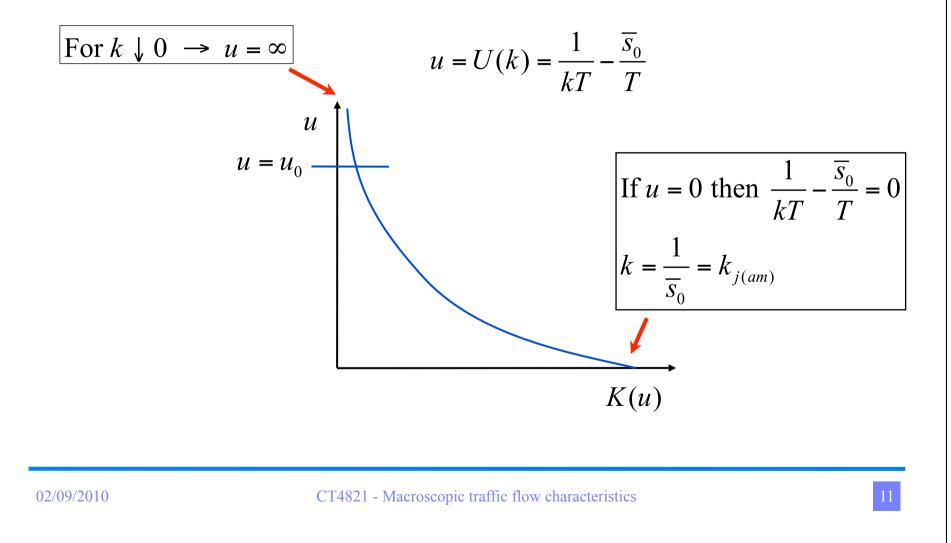
02/09/2010

• For the density we have

$$k = \frac{1}{\overline{s}} = \frac{1}{\overline{s}_0 + Tu} = K(u) \quad \left(u = U(k) = \frac{1}{kT} - \frac{\overline{s}_0}{T} = \frac{\overline{s} - \overline{s}_0}{T}\right)$$

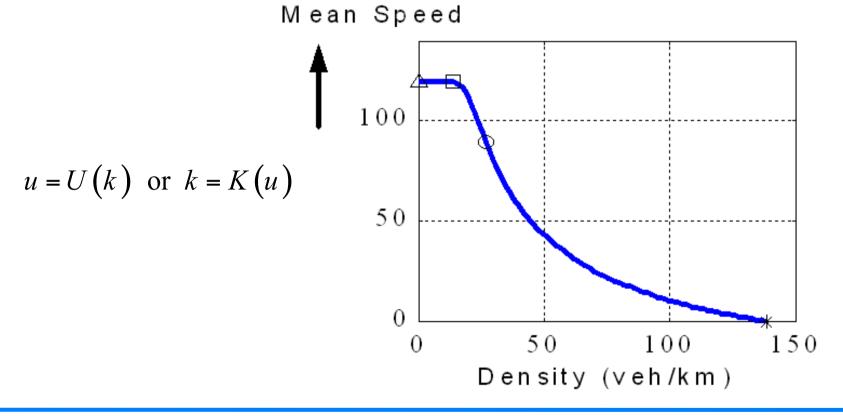
- In other words, the *density k is a function of the space-mean speed u*
- Relation will be influenced by
 - Road characteristics (grade, width, etc.)
 - Flow composition (% trucks, % commuters)
 - External / environmental conditions (weather, ambient conditions)
 - Traffic regulations
- What happens at u = 0? I.e. what density occurs when traffic is stopped?
- Is this relation valid for k = 0 (low density traffic)? Why (not)?

Plot relation between speed and density



02/09/2010

 In sum: considering a stationary / homogeneous flow → reasonable to assume that there exist some relation between density k and instantaneous speed u



Three relations are used in traffic flow theory:

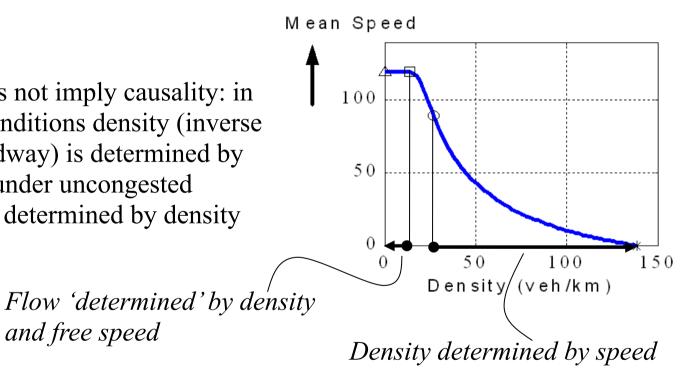
$$- q = Q(k)$$

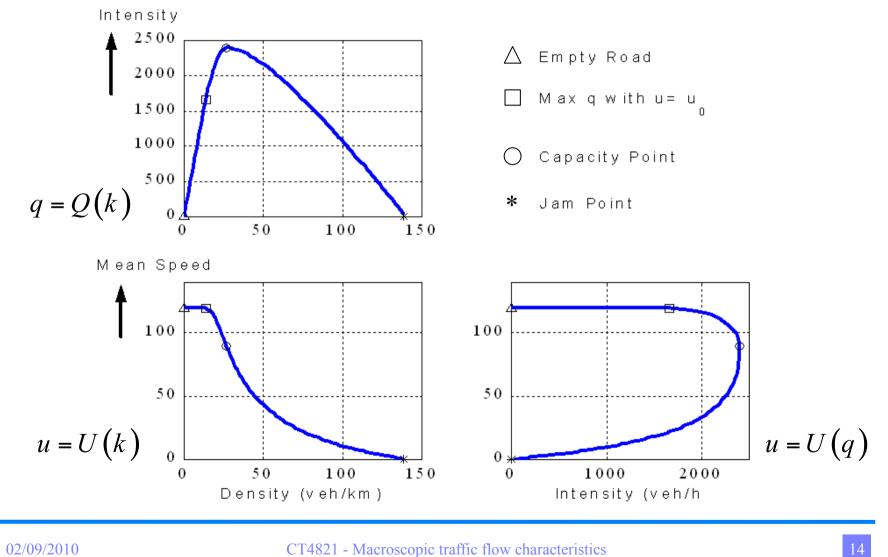
$$- u = U(k)$$

$$- u = U(q)$$

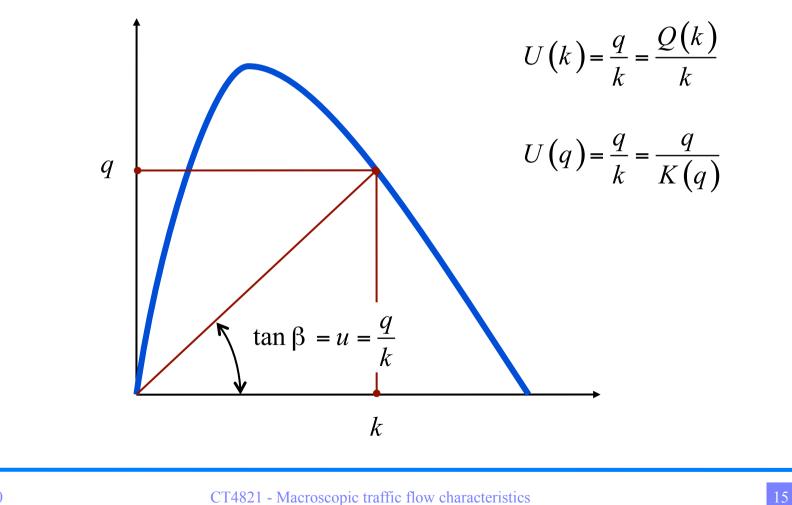
Relation does not imply causality: in congested conditions density (inverse distance headway) is determined by speed; flow under uncongested conditions is determined by density (via $q = ku_0$)

and free speed

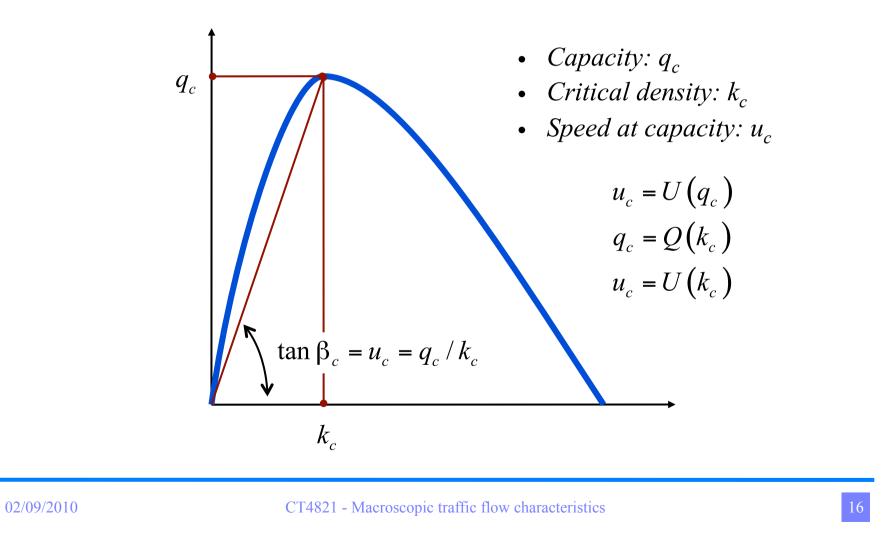


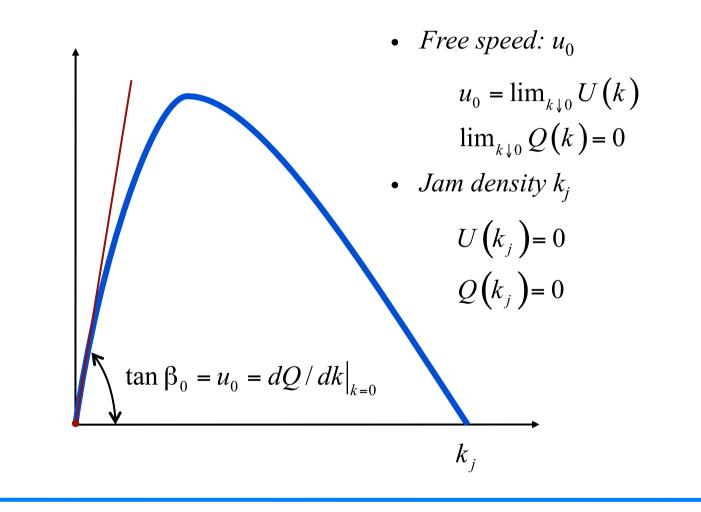


14



02/09/2010





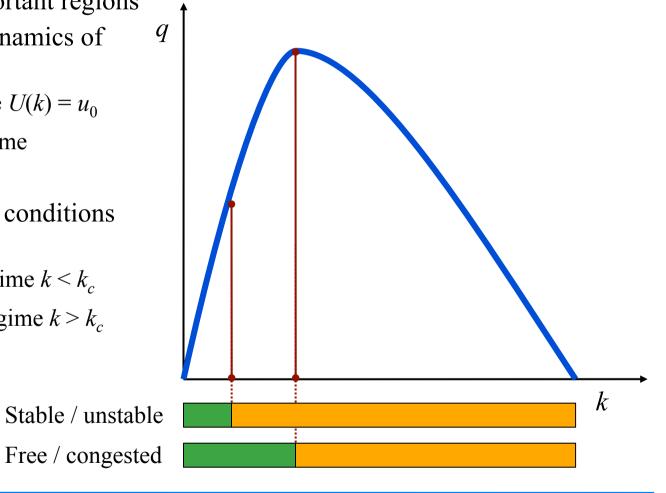
02/09/2010

CT4821 - Macroscopic traffic flow characteristics

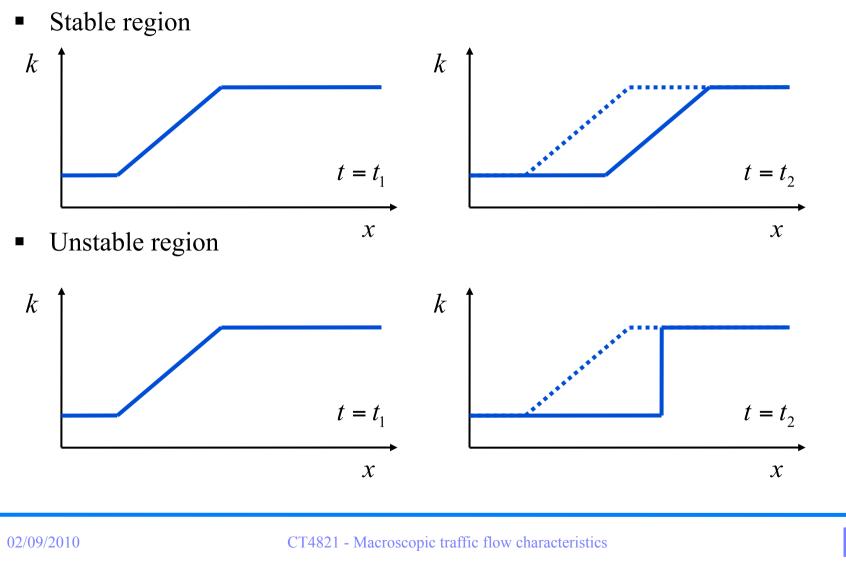
17

Flow regimes

- Number of important regions
- Based on the dynamics of 'disturbances'
 - Stable regime $U(k) = u_0$
 - Unstable regime
- Based on traffic conditions (LOS)
 - Free flow regime $k < k_c$
 - Congested regime $k > k_c$



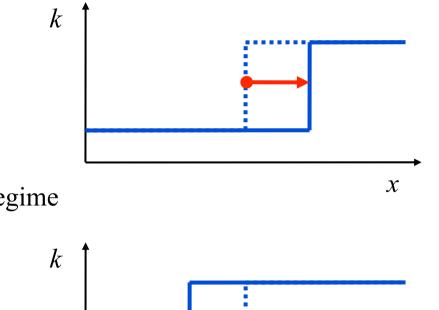
Macroscopic flow models (chapter 8)



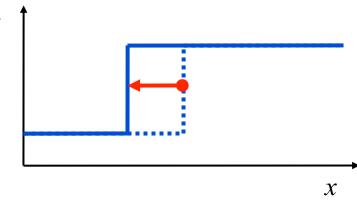
19

Macroscopic flow models (chapter 8)

• Free flow regime



Congested regime



02/09/2010

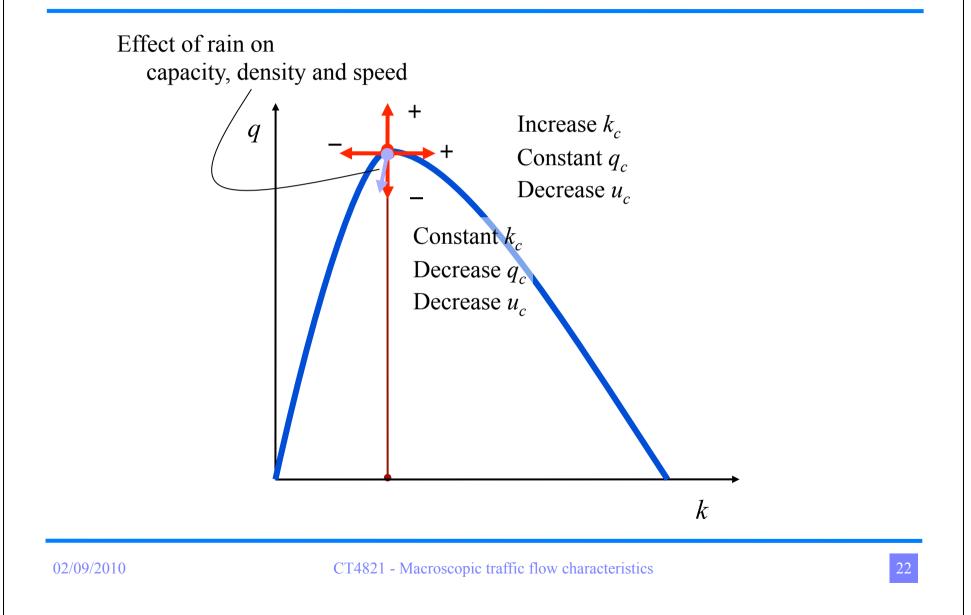
Influence of circumstances on capacity

Non-ideal conditions

Circumstances	Capacity
Ideal conditions	100%
Darkness (no illumination)	95%
Darkness (with illumination)	97%
Dense Asphalt Concrete (DAC) ² with rain	91%
Open Asphalt Concrete (OAC) with rain ³	95%
DAC / rain / darkness	88%
DAC / rain / darkness / illumination	90%
OAC / rain / darkness	91%
OAC / rain / darkness / illumination	92

02/09/2010

Effect of circumstances on capacity (2)

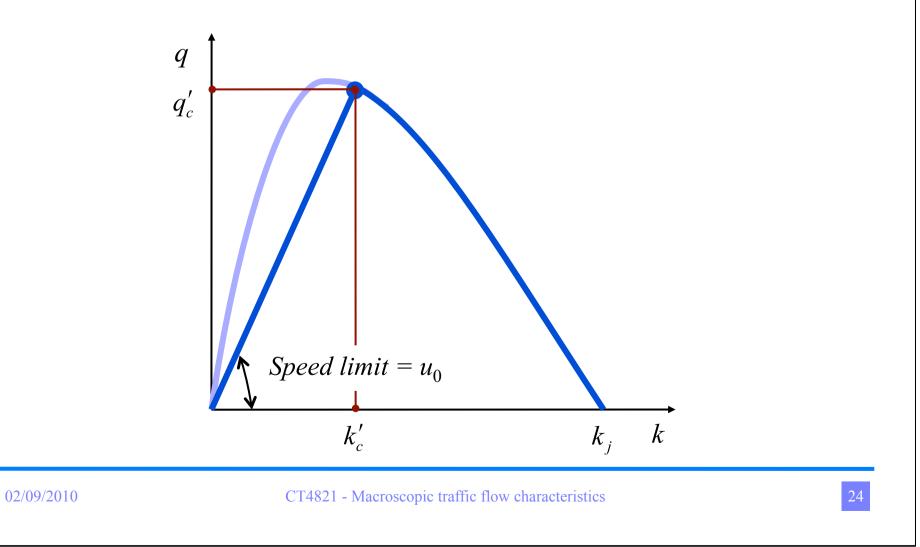


Influence of circumstances on capacity (3)

- Effect of changing speed-limits (e.g. from 120 to 80 km/h)
- Question: how will the fundamental diagram change due to a speed limit?
- Please draw the diagram for a speed limit of 80 km/ h and 50 km/h

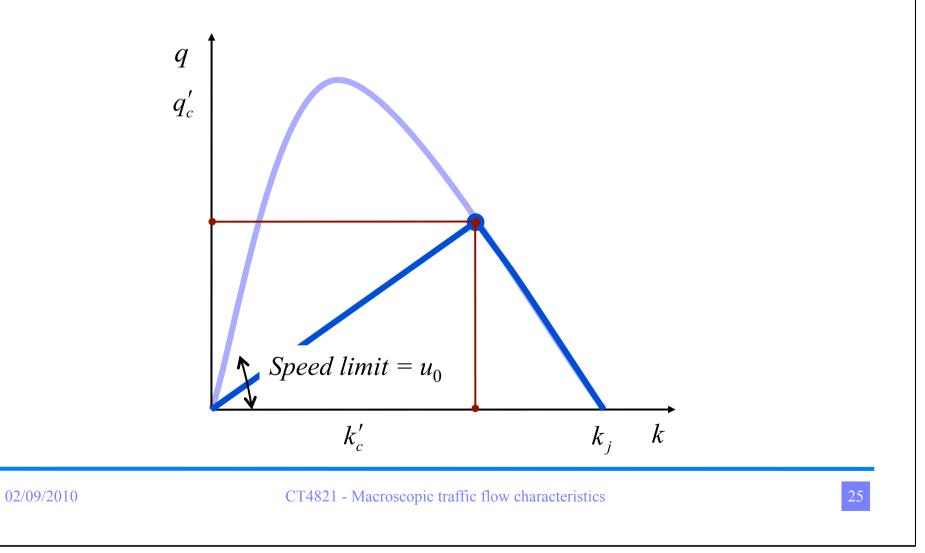
Influence of circumstances on capacity (3)

• Effect of changing speed-limits (e.g. from 120 to 80 km/h)



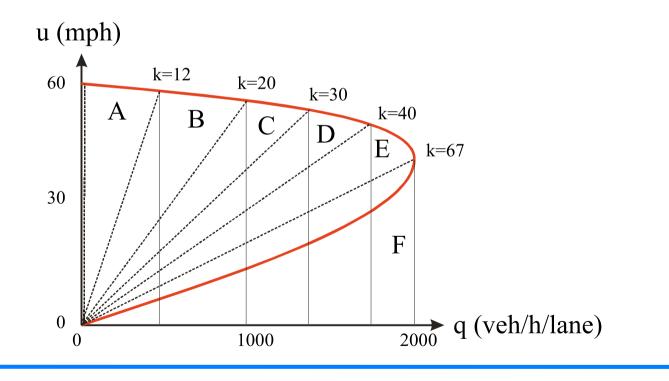
Influence of circumstances on capacity (4)

• Effect of changing speed-limits (e.g. from 120 to 50 km/h)



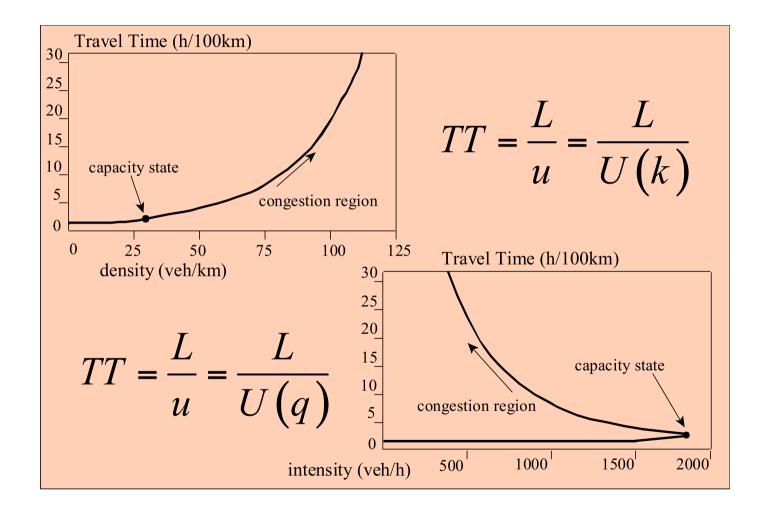
Importance of Fundamental Diagram

- Definition of Level of Service (LOS)
- Relation between intensity and travel time
- Capacity estimation
- Shockwave analysis and macroscopic traffic flow models



02/09/2010

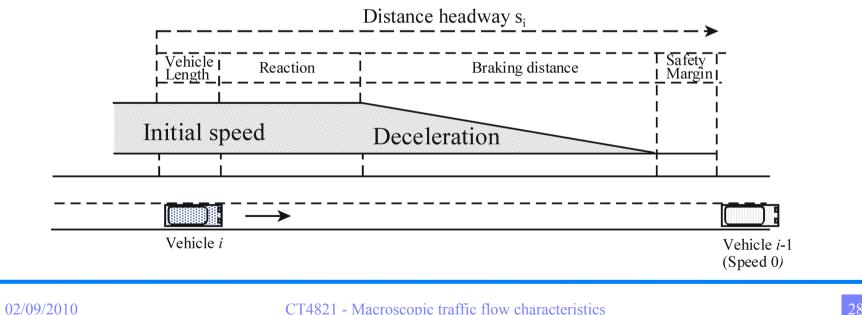
Importance of Fundamental Diagram (2)



02/09/2010

Fundamental diagram and car-following

- Car *i* following car *i*-1
- Behavioral assumptions regarding driver behavior:
 - Keep safe distance between vehicles
 - Vehicle *i* has a max. deceleration rate a > 0
 - Vehicle *i*-1 might suddenly brake with deceleration rate $\alpha \cdot a$ to complete stop
 - Safety margin between vehicles when coming to stop = L_m



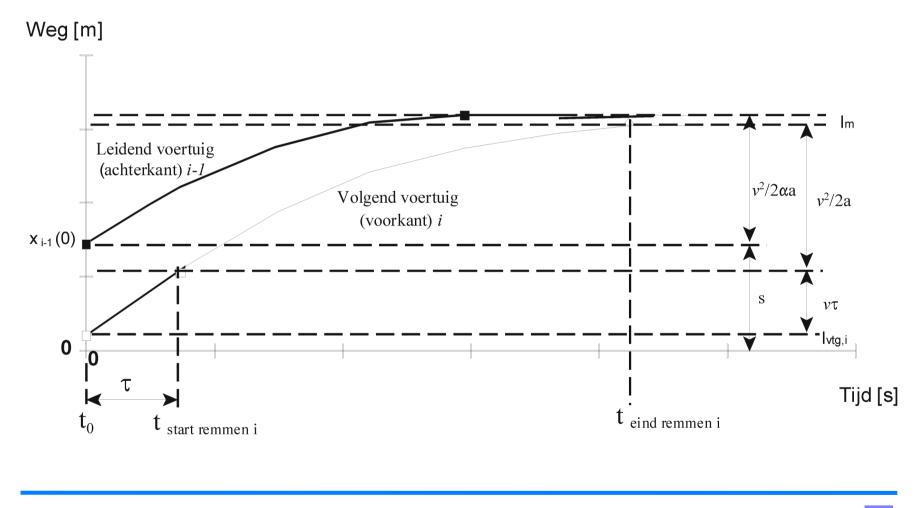
Exercise

- Assume that driver *i* has reaction time T_i
- Determine the distance driver *i* needs to maintain in order to be able to stop at distance L_m when the vehicle in front stops with maximum acceleration
- Initial distance headway? (for $t < t_0$)

 $s_i(t) = \text{distance_travelled_to_stop}_i + L_{veh} + L_m$ -distance_travelled_to_stop_{i-1}

- This rule results in the fact that after braking, vehicles have net distance L_m
- Based on this driving distance, how can you determine the fundamental diagram from this driving rule?

Fundamental diagram and car-following



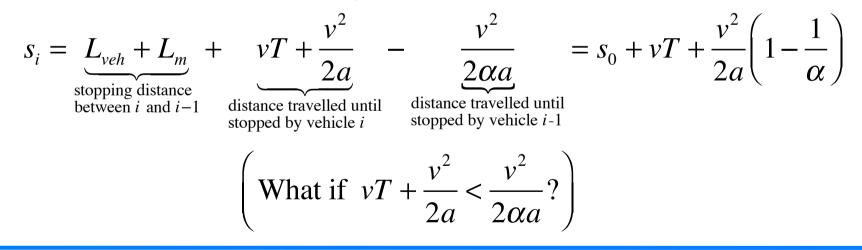
02/09/2010

CT4821 - Macroscopic traffic flow characteristics

30

Fundamental diagram and car-following (2)

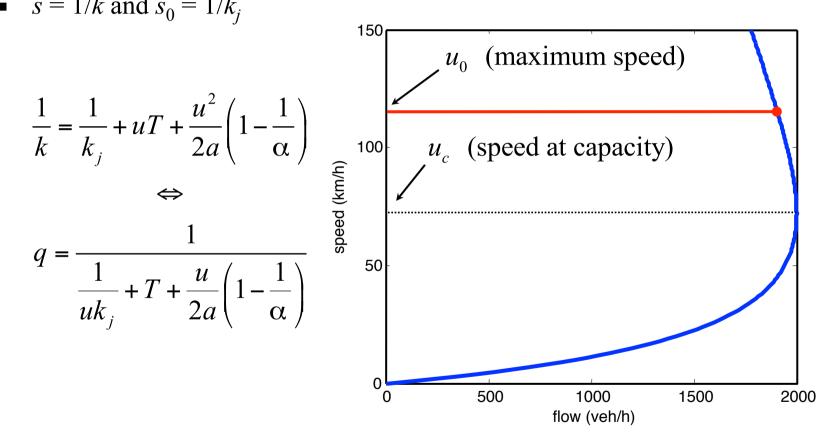
- Factor α expresses attitude towards risk
- For general drivers: $\alpha \ge 1$
- Distance traveled by *i*-1 before coming to standstill:
- Distance traveled by *i* before coming to standstill:
- For the safe distance headway we thus find:



 $\frac{v_i^2}{2\alpha a_i}$ $v_i T_i + \frac{v_i^2}{2\epsilon}$

Fundamental diagram and car-following (3)

Assume that $s_i = s$ is the average distance headway of all vehicles



• s = 1/k and $s_0 = 1/k_i$

02/09/2010

Fundamental diagram and car-following (4)

- How can you determine the capacity of this model?
- Determine critical speed u_c for which

$$\frac{dq(u)}{du} = 0$$

$$u_c = \sqrt{\frac{2}{k_j} \frac{a\alpha}{\alpha - 1}}$$
, $q_c = \frac{u_c k_j}{2 + T u_c k_j}$ and $k_c = \frac{k_j}{2 + T u_c k_j}$

• What can we say for $\alpha = 1$?

$$s_i = s_0 + v_i T_i \otimes q(u) = \frac{uk_j}{1 + Tuk_j}$$

• q(u) is a monotonic increasing function of $u \to u_c = \infty$

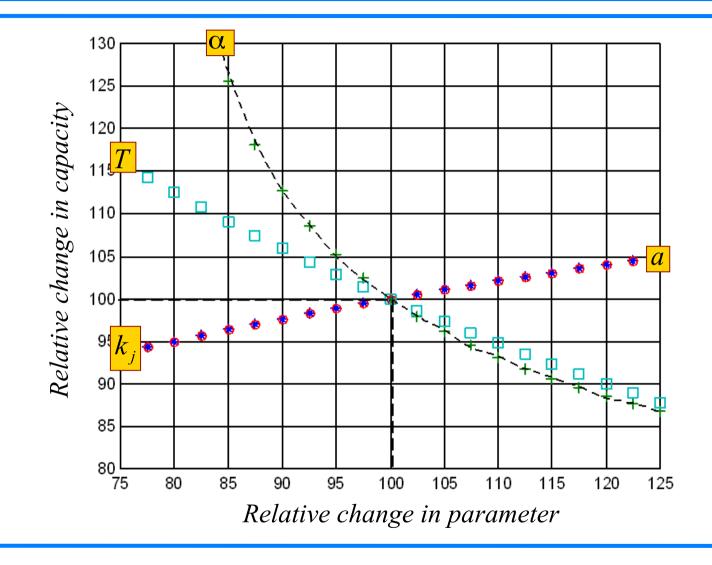
Fundamental diagram and car-following (5)

• Effect of car-following parameters on capacity

$$q_{c} = \frac{1}{T + \sqrt{2(L_{veh} + L_{m})\frac{1 - \alpha^{-1}}{a}}} < \frac{1}{T}$$

- Sensitivity analysis shows that capacity can be increased by:
 - Decrease α (attitude towards risk)
 - Decreasing the (perceived) reaction time
 - Decreasing the vehicle length / safety margin
 - Increasing max. deceleration

Fundamental diagram and car-following (6)



02/09/2010

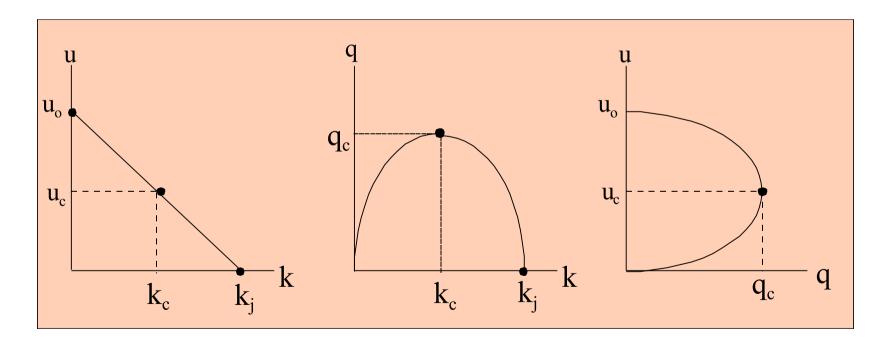
Models of the fundamental diagram

- Approach to model derivation
 - 1. From microscopic theories about driver behavior (see example, but also carfollowing models of the stimulus-response type)
 - 2. Curve fitting to empirical observations
 - 3. Analogy with flow phenomena in other fields of science (e.g gas-dynamics)
- Remainder will consider some examples of fundamental diagrams that have been / are applied frequently in the past

Models of the fundamental diagram (2)

Model of Greenshields (based on seven observations!)

$$u = u_0 \left(1 - \frac{k}{k_j} \right) \quad q = u_0 k \left(1 - \frac{k}{k_j} \right) \longrightarrow \quad k_c = \frac{k_j}{2} \qquad u_c = \frac{u_0}{2} \qquad q_c = \frac{k_j u_0}{4}$$

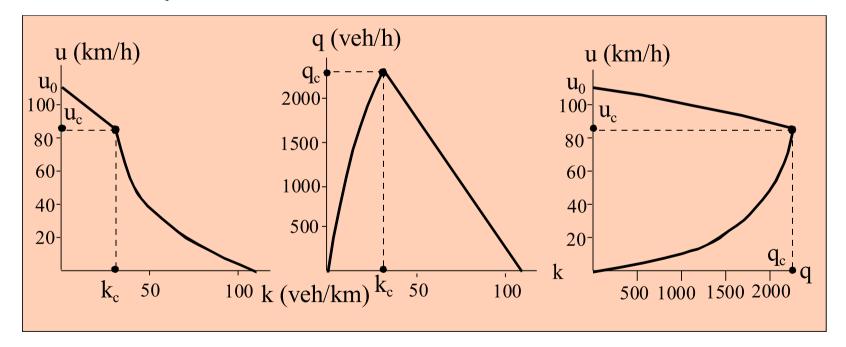


02/09/2010

Models of the fundamental diagram (3)

Fundamental diagram of Smulders

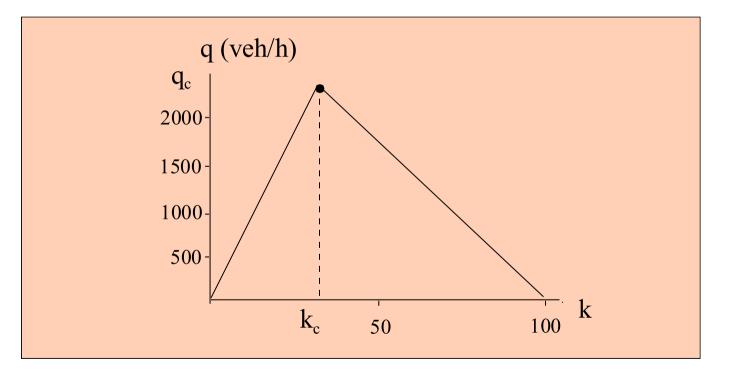
$$u(k) = \begin{cases} u_0(1-k/k_j) & k < k_c \\ \beta(1/k-1/k_j) & k > k_c \end{cases} \longrightarrow \beta = u_0k_c$$



02/09/2010

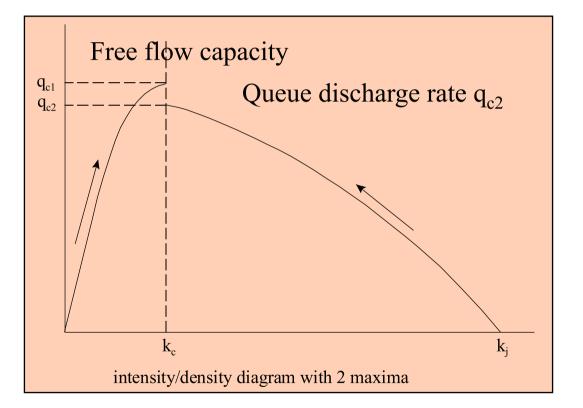
Models of the fundamental diagram (4)

- Schematized model of Daganzo
- Two linear curves
- Free parameters: u_0 , q_c , and k_j



Concept of discontinuous diagram

Discontinuity in the diagram around the capacity point



Wu's model with capacity drop

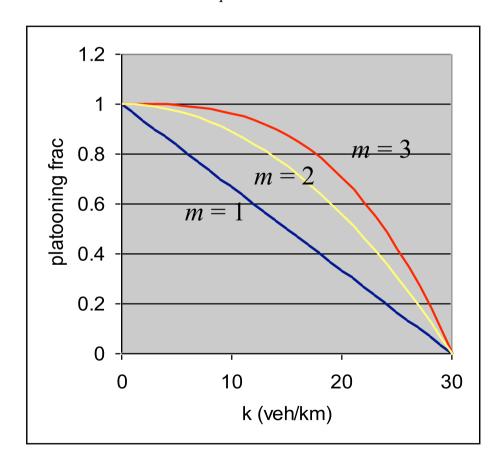
- Microscopic foundation
- Two regimes + mix
 - Free flow $(0 \le k \le k_1)$
 - Congested flow $(k_2 < k < k_j)$
- Model for the free-flow $u(k) = \phi u_0 + (1 \phi) u_p$
 - Free speed u_0
 - Platooning fraction ϕ
 - Platooning speed u_p

Wu's model with capacity drop (2)

• For $k = k_1$ all vehicles are platooning with speed u_p

 $k_1 =$

- Fraction of platooning vehicles for different roadway types (number of lanes)
- Why $h_{net}^{f?}$
 - Observable in practice
 - Constant for all states



Wu's model with capacity drop (3)

- Congested branch $(k > k_2)$
- All vehicles are in car-following state and remain at constant net headway

$$s_{net} = uh_{net}^c$$
 where $u =$ mean speed
 $s_{gross} = s_{net} + 1/k_j = uh_{net}^c + 1/k_j$
 $k = 1/s_{gross} = \frac{1}{uh_{net}^c + 1/k_j}$

• Which can be solved for *u* and leads to

$$u = \frac{1}{h_{net}^c} \left(\frac{1}{k} - \frac{1}{k_j} \right) \text{ and } q = \frac{1}{h_{net}^c} \left(1 - \frac{k}{k_j} \right)$$

02/09/2010

Wu's model with capacity drop (4)

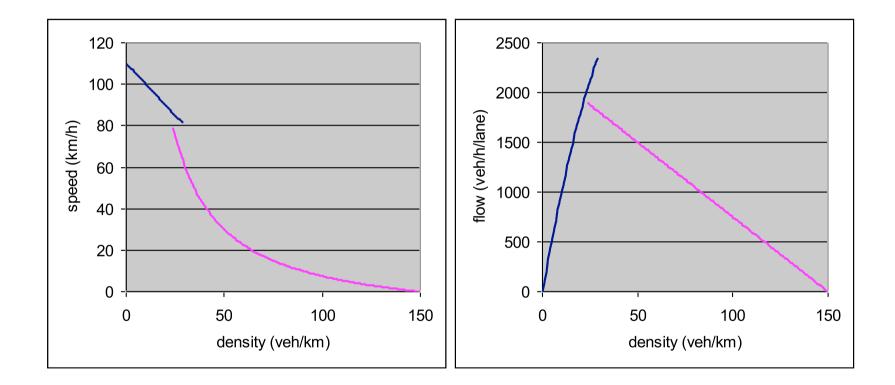
- Determine k_2
- Assumption: maximum speed at congestion is equal to the minimum speed *u_p* during free flow (at which all vehicles are platooning)

$$u_{p} = \frac{1}{h_{net}^{c}} \left(\frac{1}{k_{2}} - \frac{1}{k_{j}} \right) \implies k_{2} = \left(u_{p} h_{net}^{c} + \frac{1}{k_{j}} \right)^{-1}$$

02/09/2010

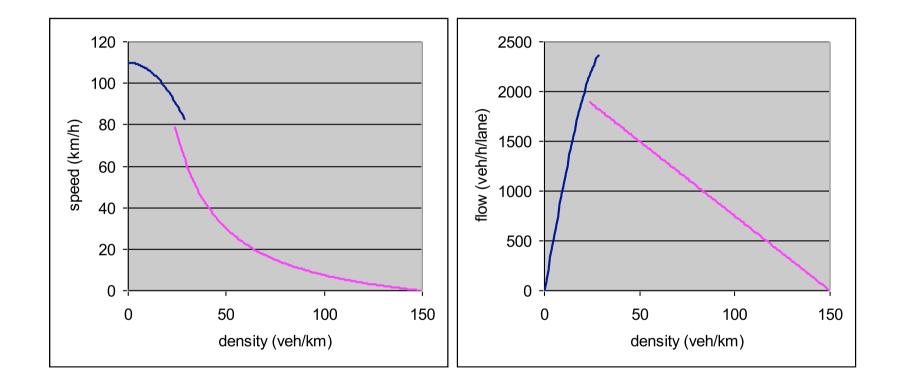
Wu's model with capacity drop (5)

• One-lane road (capacity drop: approx. 21%)



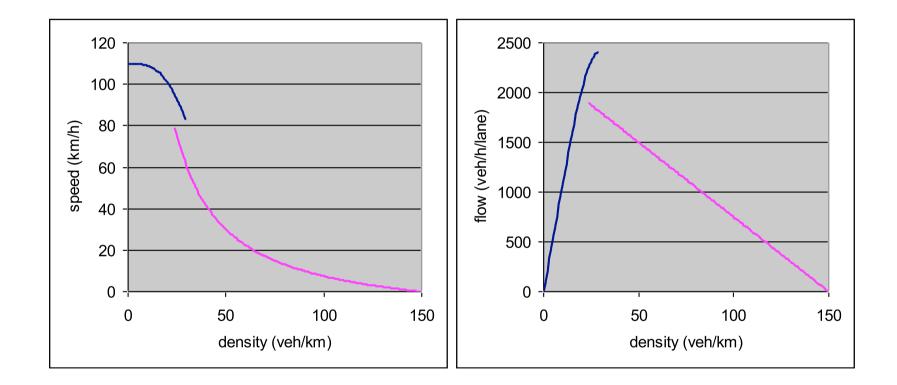
Wu's model with capacity drop (6)

Two-lane road

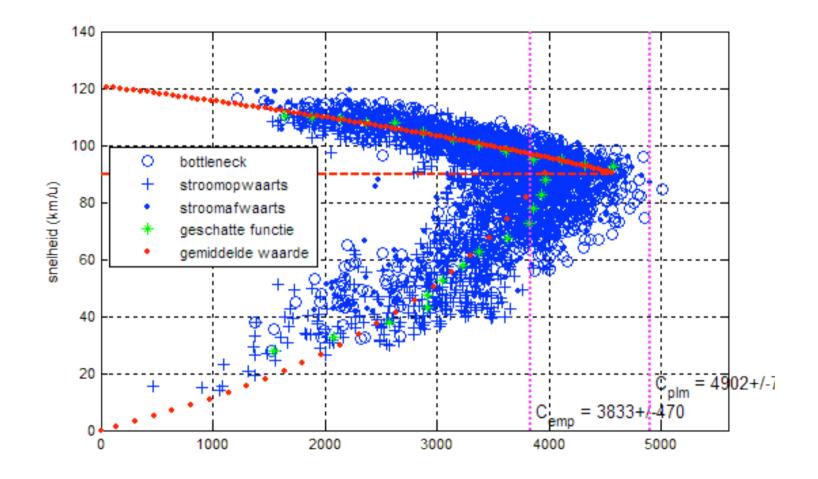


Wu's model with capacity drop (7)

Three-lane road

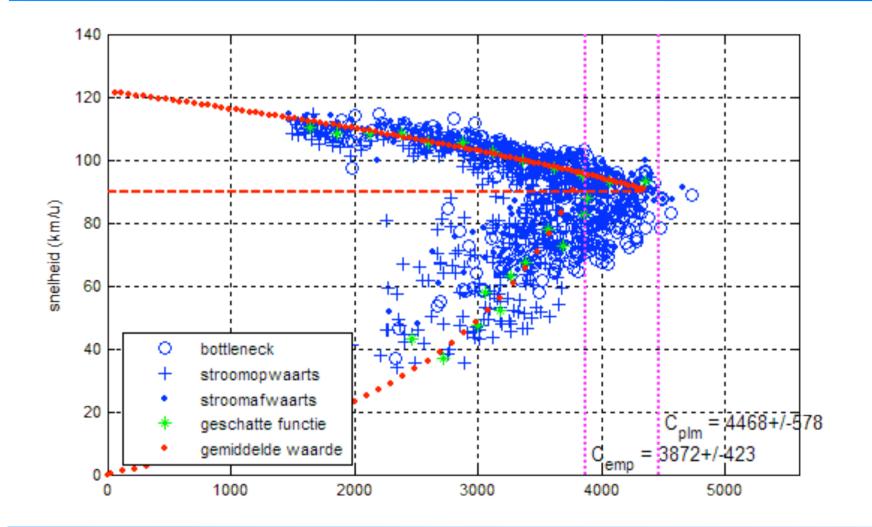


Comparison Wu's diagram and real data



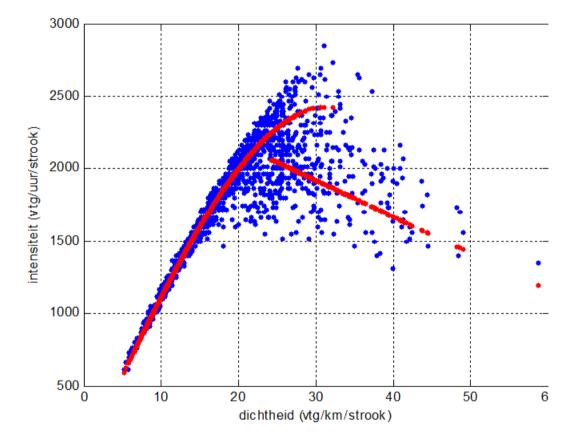
02/09/2010

Comparison Wu's diagram and real data



02/09/2010

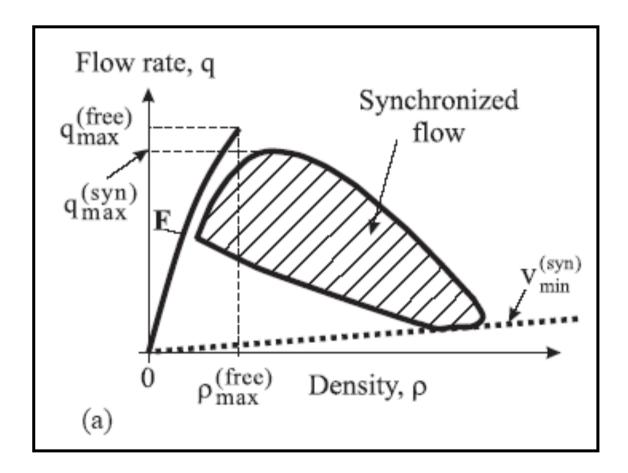
Comparison Wu's diagram and real data



Theory of Kerner

- Kerner: there is no fundamental diagram
- Three fases:
 - Free flow
 - Jam: (near) standstill
 - Synchronized flow
- In the q-k plane, the synchronized flow region is characterized by an 2-D area and not by a straight line

Fundamental 'diagram' of Kerner



02/09/2010

