ET4119 Electronic Power Conversion 2009/2010 Homework assignment 3

1. Given is a full-bridge dc-dc converter (H-bridge) with dc motor load as shown (Fig. 1). The motor is modelled by the series connection of R_a , L_a and e_a . For control of the switches so called bipolar voltage switching is applied, where the control signals are obtained by comparing a control signal $v_{control}$ with a triangular waveform v_{tri} .

The following is given:

 $T_s = 1 \text{ ms} (T_s \text{ is the period of triangular waveform})$

 $R_a = 0.1 \text{ Ohm}$

 $L_a = 2 mH$

 $V_{d} = 300V$

 $e_a = 120 V$

For the calculation of the current waveform, the resistance R_a can be neglected.

1.1 Express the average value of v_o in V_d and $\frac{1}{v_{control}} / \hat{v_{tri}}$.

- 1.2 Calculate the required ratio of $v_{control} / \hat{v}_{tri}$ to maintain an average output current of $I_0 = +10A$ at $e_a = +120$ V.
- 1.3 Calculate the required ratio of $v_{control} / \hat{v}_{tri}$ to maintain an average output current of $I_0 = -10A$ at $e_a = +120$ V.
- 1.4 Sketch the $v_0(t)$, $i_0(t)$ and the supply current $i_d(t)$ for $I_0 = +10A$ at $e_a = +120$ V.

2. Given is a single-phase full-bridge inverter operating in a square-wave mode. The dc voltage is 244V and the frequency of the output voltage that supplies a motor load is 47Hz. The inductance is L=100mH. Calculate the peak value of the ripple in the output current.

