Irrigation: crops and water delivery

Irrigation and Drainage
CT4410

echnische Universiteit Delft

Transforming a ditch for mines to a ditch for irrigation

- High canals
- Continuous flow
- Reservoirs
- Water measurement in NID

The system

Water measurement

The miners inch
Amount of water flowing through a surface of one square inch with a head of six inches.
How many liters per second??

Controlling the canal

- What if a farmer does not needs his water?
- How to keep the constant head?

Water requirements

- How to determine water requirements?
- How to predict water demand?

Design problem

What cropping pattern do you take?
How correct is the ET calculation?
How correct is the ET and rainfall for the entire area?
How would you take into account "real" soil processes?

In other words: how to take into account heterogeneity?

Lankford (2004) discusses this.
How to use remotely sensed ET in DESIGN ??

Growth stage	Length	Crop coefficient	Root depth
	Days		Meter
Initial	90	0.5	2
Development	90		\gg
Mid	90	1.2	2
Late	95	0.8	2
	365		

Crop water requirement calculation: example

Climate

	Rain	ETo
	$\mathrm{mm} /$ stage	$\mathrm{mm} /$ day
Initial	90	5
Development	65	6
Mid	40	7
Late	80	5

Remarks:

Assuming all rain is effective
Simplifying development stage
Significant numbers??

CRW

	Rain	Eto	kc	Etg	Etn
Initial	1.00	5	0.5	2.5	$\mathbf{1 . 5 0}$
Development	0.72	6	0.85	5.1	$\mathbf{4 . 3 8}$
Mid	0.44	7	1.2	8.4	$\mathbf{7 . 9 6}$
Late	0.84	5	0.8	4	$\mathbf{3 . 1 6}$

How to distribute that?

Flow for a farm of one hectare

	$\mathrm{mm} / \mathrm{day}$	$\mathrm{m} 3 / \mathrm{s}$	I / s
Continuous	8	0.0009259	1
Continuous during day	8	0.0018519	2
Every week for 10 hours	8	0.0155556	16
Every week for 1 hour	8	0.1555556	156
Every month for 1 hour	8	0.6666667	667

1. Suppose I have 10 farms, how much should my canal carry?
2. Suppose I have $1200 \mathrm{l} / \mathrm{s}$, how many farms can irrigate at the same time?
3. In case 2 , how large would my surface area per canal become?

Your assignment

1. Calculate total water demand for a 1000 hectare area in the NID over a year.
2. Describe how this water would be supplied within the NID water delivery philosophy.
3. Calculate required canal flows at the intake for this 1000 hectare area.
4. Design the canal and outlets for this area, assuming that 20 farmers with each 50 hectares take water. Assume the canal being 10 kilometers long, with farm intakes evenly spread on one side.

Example information trees

Growth stage	Length	Crop coefficient	Root depth
	Days		Meter
Initial	140	0.9	2
Development	30		\gg
Mid	150	0.95	2
Late	45	0.9	2
	365		

First, a little warning: physical reality

- Crop : COTTON
- Planting date : 1/10
- Calculation time step $=10$ Day(s)
- Irrigation Efficiency $=100 \%$
- Initial condition $=0 \%$ depletion

Date	ETO (mm/period)	Planted Area (\%)	$\begin{gathered} \text { Crop } \\ \text { Kc } \end{gathered}$	CWR (ETm)	Total Rain -- (mm/	Effect. Rain eriod)	Irr. Req.	FWS (1/s/ha)
1/10	50.76	100.00	0.35	17.77	12.17	11.87	5.90	0.07
11/10	51.83	100.00	0.35	18.14	13.82	13.24	4.90	0.06
21/10	52.63	100.00	0.35	18.42	17.10	15.75	2.67	0.03
31/10	53.11	100.00	0.44	23.56	21.59	19.12	4.44	0.05
10/11	53.24	100.00	0.61	32.66	26.63	22.83	9.84	0.11
20/11	53.01	100.00	0.78	41.52	31.49	26.35	15.18	0.18
30/11	52.41	100.00	0.95	49.97	35.52	29.22	20.75	0.24
10/12	51.49	100.00	1.12	57.84	38.32	31.16	26.68	0.31
20/12	50.29	100.00	1.20	60.35	39.75	32.07	28.28	0.33
30/12	48.54	100.00	1.20	58.24	39.84	32.07	26.17	0.30
9/1	48.03	100.00	1.20	57.63	39.86	32.26	25.38	0.29
19/1	47.50	100.00	1.20	57.00	39.51	32.19	24.81	0.29
29/1	46.75	100.00	1.20	56.10	38.52	31.64	24.46	0.28
8/2	45.80	100.00	1.20	54.96	36.75	30.49	24.47	0.28
18/2	44.70	100.00	1.14	50.97	34.22	28.73	22.24	0.26
28/2	43.48	100.00	1.03	44.84	31.01	26.41	18.43	0.21
10/3	42.21	100.00	0.92	38.93	27.33	23.68	15.25	0.18
20/3	40.94	100.00	0.81	33.28	23.45	20.72	12.56	0.15
30/3	39.71	100.00	0.70	27.95	19.68	17.79	10.16	0.12
9/4	19.42	100.00	0.62	12.08	8.55	7.86	4.22	0.10
Total	935.86			812.21	575.13	485.43	326.78	[0.19]

- Crop
: COTTON
- Planting date 1/10
- Calculation time step $=10$ Day(s)
- Irrigation Efficiency
- Initial condition $=100 \%$ depletion

Date	ETo (mm/period)	Planted Area (\%)	Crop Kc	$\begin{aligned} & \text { CWR } \\ & \text { (ETm) } \end{aligned}$	Total Rain - (mm/	Effect. Rain eriod)	Irr. Req.	FWS $(1 / s / h a)$
1/10	50.76	100.00	0.35	17.77	12.17	11.87	5.90	0.07
11/10	51.83	100.00	0.35	18.14	13.82	13.24	4.90	0.06
21/10	52.63	100.00	0.35	18.42	17.10	15.75	2.67	0.03
31/10	53.11	100.00	0.44	23.56	21.59	19.12	4.44	0.05
10/11	53.24	100.00	0.61	32.66	26.63	22.83	9.84	0.11
20/11	53.01	100.00	0.78	41.52	31.49	26.35	15.18	0.18
30/11	52.41	100.00	0.95	49.97	35.52	29.22	20.75	0.24
10/12	51.49	100.00	1.12	57.84	38.32	31.16	26.68	0.31
20/12	50.29	100.00	1.20	60.35	39.75	32.07	28.28	0.33
30/12	48.54	100.00	1.20	58.24	39.84	32.07	26.17	0.30
9/1	48.03	100.00	1.20	57.63	39.86	32.26	25.38	0.29
19/1	47.50	100.00	1.20	57.00	39.51	32.19	24.81	0.29
29/1	46.75	100.00	1.20	56.10	38.52	31.64	24.46	0.28
8/2	45.80	100.00	1.20	54.96	36.75	30.49	24.47	0.28
18/2	44.70	100.00	1.14	50.97	34.22	28.73	22.24	0.26
28/2	43.48	100.00	1.03	44.84	31.01	26.41	18.43	0.21
10/3	42.21	100.00	0.92	38.93	27.33	23.68	15.25	0.18
20/3	40.94	100.00	0.81	33.28	23.45	20.72	12.56	0.15
30/3	39.71	100.00	0.70	27.95	19.68	17.79	10.16	0.12
9/4	19.42	100.00	0.62	12.08	8.55	7.86	4.22	0.10
Total	935.86			812.21	575.13	485.43	326.78	[0.19]

- Planting date: $1 / 10$

Soil description : Medium
Initial soll molsture depletion: 0 \%

- Application Timing:

Irrigate when 100% of readily soil moisture depletion occurs

- Applications Depths:

Refill to 100% of readily available soil moisture.

- Start of Scheduling: 1/10

Date	TAM (mm)	$\begin{aligned} & \text { RAM } \\ & (\mathrm{mm}) \end{aligned}$	Total Rain (mm)	Efct. Rain (mm)	ETC (mm)	ETc/ETm (\%)	SMD (mm)	Interv. (Days)	Net Irr. (mm)	$\begin{aligned} & \text { Lost } \\ & \text { Irr. } \\ & (\mathrm{mm}) \end{aligned}$	User Adj. (mm)
5/10	49.7	29.8	6.1	6.1	1.8	100.0\%	2.7				
10/10	59.3	35.6	6.5	6.5	1.8	100.0\%	5.1				
15/10	69.0	41.4	7.1	7.1	1.8	100.0\%	7.1				
20/10	78.6	47.1	7.9	7.9	1.8	100.0\%	8.3				
25/10	88.2	52.9	8.8	8.8	1.8	100.0\%	8.7				
30/10	97.8	58.7	9.9	9.9	1.9	100.0\%	8.0				
4/11	107.4	64.5	11.2	11.2	2.3	100.0\%	7.4				
9/11	117.1	70.2	12.4	12.4	2.8	100.0\%	7.9				
14/11	126.7	76.0	13.7	13.7	3.2	100.0\%	9.4				
19/11	136.3	81.8	14.9	14.9	3.7	100.0\%	12.0				
24/11	145.9	87.6	16.1	16.1	4.1	100.0\%	15.5				
29/11	155.6	93.3	17.1	17.1	4.5	100.0\%	20.3				
4/12	165.2	99.1	18.0	18.0	5.0	100.0\%	26.2				
9/12	174.8	104.9	18.8	18.8	5.4	100.0\%	33.4				
14/12	184.4	110.7	19.3	19.3	5.7	100.0\%	42.1				
19/12	194.1	116.4	19.7	19.7	6.1	100.0\%	52.2				
24/12	196.0	117.6	19.9	19.9	6.0	100.0\%	62.6				
29/12	196.0	117.6	12.0	12.0	6.0	100.0\%	80.6				
1/1	196.0	117.6	19.9	19.9	5.8	100.0\%	78.4				
6/1	196.0	117.6	19.9	19.9	5.8	100.0\%	87.5				
11/1	196.0	117.6	19.9	19.9	5.8	100.0\%	96.4				
15/1	196.0	117.6	0.0	0.0	5.8	100.0\%	119.5	106	119.5	0.0	
16/1	196.0	117.6	19.9	0.0	5.8	100.0\%	5.8				
21/1	196.0	117.6	19.8	19.8	5.7	100.0\%	14.6				
26/1	196.0	117.6	19.6	19.6	5.7	100.0\%	23.5				
31/1	196.0	117.6	19.3	19.3	5.6	100.0\%	32.5				
5/2	196.0	117.6	18.9	18.9	5.6	100.0\%	41.6				
10/2	196.0	117.6	18.4	18.4	5.5	100.0\%	50.9				
15/2	196.0	117.6	17.9	17.9	5.5	100.0\%	60.5				
20/2	196.0	120.8	17.2	17.2	5.3	100.0\%	70.1				
25/2	196.0	126.2	16.4	16.4	4.9	100.0\%	79.0				
2/3	196.0	131.5	15.6	15.6	4.6	100.0\%	87.2				
7/3	196.0	136.8	14.7	14.7	4.3	100.0\%	94.8				
12/3	196.0	142.2	13.8	13.8	4.0	100.0\%	101.8				
17/3	196.0	147.5	12.8	12.8	3.7	100.0\%	108.3				
22/3	196.0	152.9	11.8	11.8	3.5	100.0\%	114.4				
27/3	196.0	158.2	10.9	10.9	3.2	100.0\%	120.0				
1/4	196.0	163.6	9.9	9.9	2.9	100.0\%	125.2				
6/4	196.0	168.9	9.0	9.0	2.7	100.0\%	130.0				
11/4	196.0	174.3	8.2	8.2	2.4	100.0\%	134.4				
Total			573.5	553.7	812.2	100.0\%			119.5	0.0	0.0

Planting date: $1 / 10$

- Initial soil moisture depleti
- Application Timing:

Irrigate when 100% of readily soll moisture depletion occurs.

- Applications Depths:

Refill to 100% of readily available soil moisture.

- Start of Scheduling: 1/10

Date	$\begin{aligned} & \text { TAM } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { RAM } \\ & (\mathrm{mm}) \end{aligned}$	Total Rain (mm)	Efct. Rain (mm)	ETc (mm)	ETc/ETm (\%)	$\begin{aligned} & \text { SMD } \\ & (\mathrm{mm}) \end{aligned}$	Interv. Net Lost (Days) Irr. Irr. (mm)	User Adj. (mm)
1/10	42.0	25.2	0.0	0.0	0.0	0.0\%	42.0	042.	
5/10	49.7	29.8	6.1	5.3	1.8	100.0\%	1.8		
10/10	59.3	35.6	6.5	6.5	1.8	100.0\%	4.2		
15/10	69.0	41.4	7.1	7.1	1.8	100.0\%	6.2		
20/10	78.6	47.1	7.9	7.9	1.8	100.0\%	7.4		
25/10	88.2	52.9	8.8	8.8	1.8	100.0\%	7.7		
30/10	97.8	58.7	9.9	9.9	1.9	100.0\%	7.0		
4/11	107.4	64.5	11.2	11.2	2.3	100.0\%	6.5		
9/11	117.1	70.2	12.4	12.4	2.8	100.0\%	7.0		
14/11	126.7	76.0	13.7	13.7	3.2	100.0\%	8.5		
19/11	136.3	81.8	14.9	14.9	3.7	100.0\%	11.0		
24/11	145.9	87.6	16.1	16.1	4.1	100.0\%	14.6		
29/11	155.6	93.3	17.1	17.1	4.5	100.0\%	19.3		
4/12	165.2	99.1	18.0	18.0	5.0	100.0\%	25.3		
9/12	174.8	104.9	18.8	18.8	5.4	100.0\%	32.5		
14/12	184.4	110.7	19.3	19.3	5.7	100.0\%	41.1		
19/12	194.1	116.4	19.7	19.7	6.1	100.0\%	51.3		
24/12	196.0	117.6	19.9	19.9	6.0	100.0\%	61.7		
29/12	196.0	117.6	12.0	12.0	6.0	100.0\%	79.7		
1/1	196.0	117.6	19.9	19.9	5.8	100.0\%	77.5		
6/1	196.0	117.6	19.9	19.9	5.8	100.0\%	86.5		
11/1	196.0	117.6	19.9	19.9	5.8	100.0\%	95.5	,	
15/1	196.0	117.6	0.0	0.0	5.8	100.0\%	118.6	106118.6 0.0	
16/1	196.0	117.6	19.9	0.0	5.8	100.0\%	5.8	(118.6	
21/1	196.0	117.6	19.8	19.8	5.7	100.0\%	14.6		
26/1	196.0	117.6	19.6	19.6	5.7	100.0\%	23.5		
31/1	196.0	117.6	19.3	19.3	5.6	100.0\%	32.5		
5/2	196.0	117.6	18.9	18.9	5.6	100.0\%	41.6		
10/2	196.0	117.6	18.4	18.4	5.5	100.0\%	50.9		
15/2	196.0	117.6	17.9	17.9	5.5	100.0\%	60.5		
20/2	196.0	120.8	17.2	17.2	5.3	100.0\%	70.1		
25/2	196.0	126.2	16.4	16.4	4.9	100.0\%	79.0		
2/3	196.0	131.5	15.6	15.6	4.6	100.0\%	87.2		
7/3	196.0	136.8	14.7	14.7	4.3	100.0\%	94.8		
12/3	196.0	142.2	13.8	13.8	4.0	100.0\%	101.8		
17/3	196.0	147.5	12.8	12.8	3.7	100.0\%	108.3		
22/3	196.0	152.9	11.8	11.8	3.5	100.0\%	114.4		
27/3	196.0	158.2	10.9	10.9	3.2	100.0\%	120.0		
1/4	196.0	163.6	9.9	9.9	2.9	100.0\%	125.2		
6/4	196.0	168.9	9.0	9.0	2.7	100.0\%	130.0		
11/4	196.0	174.3	8.2	8.2	2.4	100.0\%	134.4		
Total			573.5	552.8	810.4	99.8\%		$160.6 \quad 0.0$	0.0

What did I do? Water requirements

Water need in I/s and miners inches/farm

So why start per April 1??

- What if a farmer is an early vegetable grower?
- What if it does not rain in April?
- What if ... ?

And the canal?

I know I will have fluctuating flows and that there is a need to maintain the same water level. So, one uniform flow calculation will not suffice. And I probably need some kind of water level control, and perhaps some spills.

Canal calculation

Not that straightforward designing a fitting canal and structures

canal	AB
\mathbf{L}	10000
\mathbf{H} control	0.64
\mathbf{y}	0.64
\mathbf{A}	2.97
\mathbf{Q}	0.66
\mathbf{m}	1
\mathbf{v}	0.22
\mathbf{R}	0.51
\mathbf{s}	35
\mathbf{k}	4
\mathbf{b}	6.0001
\mathbf{n}	

Q increases:

canal	AB
\mathbf{L}	10000
H control	0.71
\mathbf{y}	0.71
A	3.34
Q	0.8
\mathbf{m}	1
\mathbf{v}	0.24
\mathbf{R}	0.56
\mathbf{s}	0.0001
\mathbf{k}	35
\mathbf{b}	4
\mathbf{n}	5.6

Q decreases:

canal	$A B$
L	10000
\mathbf{H} control	0.47
\mathbf{y}	0.47
\mathbf{A}	2.10
\mathbf{Q}	0.4
\mathbf{m}	1
\mathbf{v}	0.19
\mathbf{R}	0.39
\mathbf{s}	0.0001
\mathbf{k}	35
\mathbf{b}	4
\mathbf{n}	8.5

Canal calculation

So probably we need water leı

Weirs?

And what if I have farmers with only fuit and vegetables????

What did I do?

Design discharge of $1 \mathrm{~m} 3 / \mathrm{s}$
Water depth of 1 meter, bed width of 2 meters
Slope of 1 in 10000
Side slope of 1
Roughness of about 45 (Strickler)

Animation time:
02Jan-1951 16:00:00

