## Irrigation: main system layout



## Ordering the disorder?



- Therefore you know the potential area
- You know the smallest unit you haventafildsitivyin water to
- You know how yur whit to deliver veater
- You have ineasaboutstruetures to FDa

Source: river

- It's time for the canals!

Goal:
smallest unit

## Main issues

- Layout of the main system
- Every canal above tertiary units
- Determined by natural terrain and units
- Capacities of main system
- Losses
- Rotation
- Statistics
- Behavior of the main system
- Hydraulic flexibility
- Operational flexibility
- Reaction times

(contour lines in meters)

(contour lines in meters)


# Q at a certain level is not necessarily the sum of all Q's at lower levels. 

TUDelft

## Capacities: example 1



## Capacities: example 2



## Capacities: example 3



## Capacities of the drainage system

Loads on the system: rainfall of 100 mm in 2 hours

- Assuming an irrigated area of 5000 hectares, this would give a volume of


## 5,000,000 m ${ }^{3}$

But: how to discharge this volume?

- In 2 hours: $694 \mathrm{~m} 3 / \mathrm{s}$
- In 5 days: about $6 \mathrm{~m} 3 / \mathrm{s}$
- Water will be stored in the system: on the fields, in the canals, in the soil (?)


## Drainage capacities: decision time

- The load: how often does it occur? Probability?
- Design a drainage canal for a certain maximum Q with freeboard, and allow a higher $Q$ at times (without freeboard)?
- Need to drain the irrigation supply? For example when nobody wants to irrigate?
- Furthermore: like with supply canals, thresumbof allejndividual canals does not have to be the same astale deakimbinfor drainage discharge capacity.


## In short: enough to decide.

Again......

## Three rainfall scenarios

- Rainfall is showers (about every 10 to 15 days)
- Rainfall averaged over all the days
- Rainfall in showers with maximum shower at 100 mm/day
- All other parameters equal
- Irrigation at 100 mm per 10 days
- Silty loam
- Initial groundwater at 3 meter below surface


## Rain in showers



## Showers plus maximum



## Average



## And the runoff??




## Water levels in the system??



## Thus required water levels are:




Design a canal (calculate) and determine control structures for offtakes/canal. Each offtake requires $1 \mathrm{~m}^{3} / \mathrm{s}$ in the peak season and may need less or nothing during the remaining months.

## Your own design

## Issue 1: Water demand versus water availability

- Timing of the demand
- Timing of availability
- Amount of hectares to be irrigated
- Associated risk in balancing demand and availability
- Issue 2: Bringing water to the field(s)
- Continuously, rotation, fixed turns, days, hours, what flow is available for farmers?
- Issue 3: Grouping farmers or not - units
- Issue 4: Who decides?
- Water delivery
- Demand-based, request-based, supply-based?
- Upstream or downstream control?
- Issue 5: Water control structures
- Discharge control, measurement, fixed or adjustable, sensitivity?


## Dimensioning your irrigation system

- Take a typical stretch of your system
- Determine required water levels along this stretch, taking into account requirements from smaller canals, structures etcetera
- Determine available energy gradient per section
- Design canals and structures (steady flow)
- Check, check and check! What happens when Q is lower, or higher, or whatever (steady flow).

