Irrigation: main system layout

1

TUDelft

Water Resources Management

Technische Universiteit Delft

Ordering the disorder?

- You know water demand and water availability
- Therefore you know the potential area Goal:
- You know the smallest unit you have to water to
- You know how you want to deliver coater
- You have ideas about structures to be applied Source: river Goal:
 - It's time for the canals!

smallest unit

Main issues

• Layout of the main system

- Every canal above tertiary units
- Determined by natural terrain and units

Capacities of main system

- Losses
- Rotation
- Statistics

Behavior of the main system

- Hydraulic flexibility
- Operational flexibility
- Reaction times

(contour lines in meters)

December 14, 2011

L a y o u t

(contour lines in meters)

December 14, 2011

Q at a certain level is not necessarily the sum of all Q's at lower levels.

December 14, 2011

Capacities: example 1

December 14, 2011

Capacities: example 2

Capacities: example 3

Capacities of the drainage system

Loads on the system: rainfall of 100 mm in 2 hours

 Assuming an irrigated area of 5000 hectares, this would give a volume of

5,000,000 m³

But: how to discharge this volume?

- In 2 hours: 694 m3/s
- In 5 days: about 6 m3/s
- Water will be stored in the system: on the fields, in the canals, in the soil (?)

Drainage capacities: decision time

- The load: how often does it occur? Probability?
- Design a drainage canal for a certain maximum Q with freeboard, and allow a higher Q at times (without freeboard)?
- Need to drain the irrigation supply? For example when nobody wants to irrigate?
- Furthermore: like with supply canals, the with file individual canals does not have to be the same aretic deaxiand for drainage discharge capacity.
 Furthermore: like with supply canals, the with file individual canals does not have to be the same aretic deaxiand for soil preparation!

In short: enough to decide.

Again.....

Three rainfall scenarios

- Rainfall is showers (about every 10 to 15 days)
- Rainfall averaged over all the days
- Rainfall in showers with maximum shower at 100 mm/day
- All other parameters equal
 - Irrigation at 100 mm per 10 days
 - Silty loam
 - Initial groundwater at 3 meter below surface

Rain in showers

December 14, 2011

Showers plus maximum

December 14, 2011

December 14, 2011

And the runoff??

December 14, 2011

Water levels in the system??

Thus required water levels are:

offtakes/canal. Each offtake requires 1 m³/s in the peak season and may need less or nothing during the remaining months.

20 Second Provide A contract of the second s

Your own design

Issue 1: Water demand versus water availability

- Timing of the demand
- Timing of availability
- Amount of hectares to be irrigated
- Associated risk in balancing demand and availability
- Issue 2: Bringing water to the field(s)
 - Continuously, rotation, fixed turns, days, hours, what flow is available for farmers?
- Issue 3: Grouping farmers or not units
- Issue 4: Who decides?
 - Water delivery
 - Demand-based, request-based, supply-based?
 - Upstream or downstream control?
- Issue 5: Water control structures
 - Discharge control, measurement, fixed or adjustable, sensitivity?

Dimensioning your irrigation system

- Take a typical stretch of your system
- Determine required water levels along this stretch, taking into account requirements from smaller canals, structures etcetera
- Determine available energy gradient per section •
- Design canals and structures (steady flow) lacksquare
- Check, check and check! What happens when Q is • lower, or higher, or whatever (steady flow).

