CIE4801 Transportation and spatial modelling
Building a model: OD-matrix estimation and forecasting
Rob van Nes, Transport & Planning
31-08-18
Contents

• Building models:
 • Building a model
 • Estimating OD-matrices using counts
 • Forecasting
2.

Building a model
Overview framework

- Zonal data
- Trip generation
- Trip distribution
- Modal split
- Period of day
- Assignment
- Travel times
 network loads etc.

- Trip frequency choice
- Destination choice
- Mode choice
- Time choice
- Route choice

- Transport networks
- Travel resistances

CIE4801: Building a model: OD-estimation and forecasting
Define your model

- Define study area
 - Cordon model or including influence and external areas?

- Define relevant mode(s), trip purpose(s) and time period(s)

- Define relevant level of detail
 - Network and zoning

- Define model type
 - Descriptive or choice model
 - Determine model formulations
Collect data

- Zone data
 - In case of cordon model Production and attraction for external zones

- Network data

- External data
 - E.g. Through traffic or OD-matrix trucks

- In case of choice models
 - Data on travel behaviour

- Else
 - Data to determine parameters (e.g. travel surveys)

- Note that simply copying functions and parameters is very tricky!
Determine choice functions

- Observe choices as well as the considered alternatives
 - Revealed preference: actual behaviour
 - Stated preference: choice experiments

- Formulate utility functions

- Estimate parameters in utility function such that the probability of the chosen alternative is highest
 - Maximum likelihood method (or log-likelihood)

- Check the quality of the model
 - e.g. $\rho^2 \approx R^2$, sign and t-statistics of the parameters

- Dedicated software such as BIOGEME (e.g. see CIE4831, SPM4612)
Determine trip generation functions

- Linear regression
 - Or Cross classification
- Usually at a more aggregate level than zones
 - e.g. Municipality
- Check quality of the model
 - R^2 and t-statistics of the parameters
- See Omnitrans exercise 2
Determine cost functions for the skims

- Specify generalised cost function
 - One single specification
 - Trip purpose specific specifications
 - For instance when time and costs are included (VoT!)
Determine distribution functions

Hyman’s method

Given:
- Cost matrix
- Production and attraction
- Mean trip length

Assumed:
- Exponential distribution function

Estimated:
- Q_i, X_j and parameter distribution function

Poisson model

Given:
- Cost matrix
- (partial) observed OD-matrix

Thus also known:
- (partial) production and attraction
- Totals per class for the travel costs

Estimated:
- Q_i, X_j and F_k
(Latter can be used to estimate distribution functions)
Determine travel time functions

- BPR-function is mostly used

- Different road types have different parameters
 - Especially the value of α

- Literature suggests some other functions based on either theoretical requirements or on computational advantages (or both)
Run the model

- First check and double-check everything

- Run the 4-step model
 - In the right order ;)

- Analyse the results: are they OK?

- When is it OK?
The “eating of the pudding”

- Key question then is:
 - Does it match the counts?

- Common finding
 - There are quite some differences

- Two options:
 - Check the work done (especially the network!) and build a new (better) matrix
 - Adjust the OD-matrix itself to achieve a better match
3. OD-estimation
Example

Given a network and an OD-matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>125</td>
<td>62</td>
<td>20</td>
<td>138</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>125</td>
<td>121</td>
<td>125</td>
<td>8</td>
<td>223</td>
<td>147</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>125</td>
<td>62</td>
<td>20</td>
<td>138</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>8</td>
<td>20</td>
<td>3</td>
<td>89</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>138</td>
<td>223</td>
<td>138</td>
<td>89</td>
<td>0</td>
<td>811</td>
</tr>
<tr>
<td>6</td>
<td>91</td>
<td>147</td>
<td>91</td>
<td>59</td>
<td>811</td>
<td>0</td>
</tr>
</tbody>
</table>

What is the flow on the link from node 1 to 4? => 20+91+89+811=1011

Let’s assume we have a count for that link: 900 vehicles/hour. How would you adapt the OD-matrix?

And what would you do if a second count but now for the link from 4 to 6 is available: 1400 instead of 1199 as computed?
Topics for discussion

• What does this modelling component do? What’s its output and what’s its input? How does it fit in the framework?
• Important notions
 • Independency of counts, consistency
• Concept of OD-estimation?
 • Estimation of an OD-matrix from counts only?
 • The basic application: multiplier per count
 • Similarity between matrix estimation method (ME2) and the entropy model
 • Concept of Pivot-point modelling
• Practical issues
• Are these models appropriate?
3.1

Estimating OD-matrices

Updating using traffic counts
Calibration from link counts only

OD matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
Calibration from link counts only

A B C
A 0 40 60
B 0 0 70
C 0 0 0

A B C
A 0 20 80
B 0 0 50
C 0 0 0

A B C
A ? ?? ??
B 0 0 ??
C 0 0 0

A B C
A 0 40 ?
B 0 0 ??
C 0 0 0

A B C
A 0 ?? ??
B 0 0 100
C 0 0 130
Calibration from link counts only

A B C
A 0 20 80
B 0 0 50
C 0 0 0

A B C
A 0 ?? ??
B 0 0 ??
C 0 0 0

TU Delft
CIE4801: Building a model: OD-estimation and forecasting
Updating an OD-matrix to traffic counts

- Counts set additional constraints for the OD-matrix

- Previously the constraints were only $\sum_j T_{ij} = P_i$ and $\sum_i T_{ij} = A_j$

- The constraint for a count on link a is $\sum_i \sum_j \sum_r \alpha_{ijr}^a \cdot \phi_{ijr} \cdot T_{ij} = S_a$

- So, one option is to start with a simple matrix ($T_{ij}=1$) and balance the matrix to fit all constraints (tri- or multi-proportional fitting)
 - Note that the distribution function and possible segmentations are omitted
 - Furthermore, this only works if all constraints are consistent……..

- The second (and better) option is to find a matrix that finds a balance between an original (a priori matrix) and the counts
Simple approach: multiplier per count

- Use an a-priori matrix from a model

- For each link having a count the ideal multiplier for the OD-pairs using that link is
 \[x_k = \frac{\sum_i \sum_j \sum_r S_k \alpha_{ijr} \cdot \phi_{ijr} \cdot T_{ij}}{\sum_i \sum_j \sum_r \alpha_{ijr} \cdot \phi_{ijr} \cdot T_{ij}} \]

- As an OD-pair might pass multiple counts the resulting multiplier for that OD-pair is
 \[y_{ij} = \frac{\sum_k \left(x_k \cdot \sum_r \alpha_{ijr} \cdot \phi_{ijr} \cdot T_{ij} \right)}{\sum_k \sum_r \alpha_{ijr} \cdot \phi_{ijr} \cdot T_{ij}} \]

 i.e. the weighted average of the ideal multipliers for that specific OD-pair

- Obviously, the averaging of the ideal multipliers per count leads to a poorer match than intended, thus (again) an iterative procedure
Example based on AON

(All links have equal length)

OD-matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Flow from } 1 & \text{ to } 2 & \frac{30}{20+5} \cdot 20 = 24 \\
\text{Flow from } 3 & \text{ to } 4 & \frac{30}{20+5} \cdot 5 = 6 \\
\end{align*}
\]
Quality of constraints

- Not all counts have the same quality, e.g. permanent loop detectors versus manual counts between 07.00 and 19.00.

- Trick: assign a weight (or “elasticity”) \(e_k \) to each constraint ranging between 0 (no influence at all) and 1 (maximum adjustment).

- The multiplier for each constraint then becomes:

\[
x_k = \left(\frac{\sum_i \sum_j \sum_r S_k \cdot \phi_{ijr} \cdot T_{ij}}{\sum_i \sum_j \sum_r \alpha_{ijr} \cdot \phi_{ijr} \cdot T_{ij}} \right)^{e_k}
\]

- Consequence: not all constraints are met at all costs.
3.2

Estimating OD-matrices
Formulation as optimisation problem
Criteria for differences between OD-matrices

- Least squares between estimated number of trips and the a priori number of trips

\[
\min : \sum_{ij} \left(\hat{T}_{ij} - T_{ij}^{ap} \right)^2
\]

- Minimum distance criterion based on information minimisation

\[
\min : \sum_{ij} \left(\hat{T}_{ij} \cdot \ln \left(\frac{\hat{T}_{ij}}{T_{ij}^{ap}} \right) - \hat{T}_{ij} + T_{ij}^{ap} \right)
\]
Formulation as optimisation problem

- Given the objective function (criterion) the constraints can be included using Lagrange multipliers, e.g.

\[
L = \sum_{ij} \left(\hat{T}_{ij} \cdot \ln \left(\frac{\hat{T}_{ij}}{T_{ij}^{ap}} \right) - \hat{T}_{ij} + T_{ij}^{ap} \right) - \sum_k \lambda_k \cdot \left(S_k - \sum_i \sum_j \sum_r \alpha_{ijr}^k \cdot \phi_{ijr} \cdot \hat{T}_{ij} \right)
\]

- Setting the derivatives equal to zero yields a set of equations that can be solved using dedicated software

NB Note the similarity with the entropy maximising approach discussed for the trip distribution model
Three comments

• Note that this formulation can also be used for other types of constraints such as production, attraction or classes of observed trip length distribution

• These methods can also deal with probability distributions for the constraints
 • Including covariance between observations

• These optimisation methods are very (and perhaps too) powerful!
3.3

Practical topics
Practical topics

- Ratio between variables and constraints?
- Which adjustments are acceptable?
- What about OD-pairs that are not affected by constraints?
- Matrix estimation in congested networks?
- What about a forecast?
Ratio between variables and constraints

- Number of variables: n^2

- Number of constraints:
 - Production and attraction: $2n$
 - Counts: depends on the size of model
 - Municipality: a few dozen
 - Region: a few hundred
 - In order to reduce impacts of "route choice", counts are often aggregated into screenlines => less constraints

- Problem is heavily underspecified
Which adjustments are acceptable?

- In many cases there are OD-pairs that relate to a single count
- Consequence is that a perfect match is always possible
- However, is this really perfect?
What about OD-pairs that are not affected by constraints?

- Suppose that 60% of the trips from a zone pass a count
- Suppose that these 60% show an overall increase of 10%
- What is then realistic for the other 40% of the trips from that zone:
 - Should be decreased to match the original production?
 - Should be increased by 10% as well?
 - Change nothing?
Matrix estimation in congested networks?

- In OD-estimation you try to match the modelled flow with counts
- In congested networks the flows are related to capacities
- In fact, the assignment already tries to limit the flows to the capacities
- So what is estimated in matrix estimation: demand or capacities?
- Furthermore: if the OD-matrix changes the assignment changes as well.............
 - Iterative process?
What about a forecast?

- Estimated OD-matrix yields a better match with counts
- For a future year you do not have counts
- So what do you do?
 - Stick to the corrections of the OD-matrix
 - See discussion on K-factors (Chapter 5)
 - Or ignore corrections for a future year
 - Or………
Applying a model for forecasting
How is a model used?

- Roads and PT
- Transport policy
- Spatial pattern
- Demography
- Economy

Policy Scenario
Science plus skill

Model

The numbers
Forecasting

Base year

Forecast Variant 1
- Roads and PT
- Transport policy
- Spatial pattern
- Demography Economy
- Model
- The numbers

Forecast Variant 2
- Roads and PT
- Transport policy
- Spatial pattern
- Demography Economy
- Model
- The numbers

The differences
How to deal with the limitations of your model when making a forecast?

• Base year model
 • Justification of your model

• However, model is a simplification of reality. How to deal with that when making a forecast?

• 3 options
 • Rely on base year matrix
 • Rely on model
 • Combination of both

• In all cases: proper interpretation of the results
Rely on the base year matrix

- Make sure that the base year is of high quality
 - Good fit with counts using a high quality a priori matrix

- Use a growth factor method for the forecast
 - Especially changes in production and attraction

- Limitations
 - How to deal with new developments?
 - Network effects on distribution and modal split are not included
 - Mostly suitable for short term forecasts only
Rely on the model

- Make sure that the model is of high quality
 - Proper functions and parameters
 - Decent match with counts etc.

- Run the model using the input for the forecast year

- Check the model for those results where the base year model had some limitations
Combination of both worlds

- Key philosophy:
 - Model is the best representation of the mechanisms or sensitivities in the transport system
 - Base year matrix is best representation of the OD pattern

- Thus use the model to determine the relative changes between base year and forecast year (synthetic model or shadow model)

- Next, use these relative changes to update the base year matrix (pivot)
Pivot model approach

Base year matrix

Input base year model

Base year model matrix

Input forecast year model

Forecast year model matrix

Growth factor matrix \((g_{ij})\)

Forecast year matrix

Calibrated model

Input forecast year model

Base year model matrix

Forecast year model matrix
Points of attention for the pivot method

- Relationship between base year matrix and base year model?

- Growth factor method extrapolates “errors” in the base year matrix
 => Demand patterns should be consistent
 (e.g. use base year model matrix as input for OD-estimation)

- How to account for changes in spatial structure (empty cell problem)
 - There’s nothing to multiply with

Substitute cell value with results synthetic OD-matrix
Or,
Use matrix manipulation to account for changes in spatial structure
and use pivot to account for network and policy changes only
In all cases

• Take care of the relevant accuracy
 • Within the model there are partial persons and partial cars!
 • Exact values tend to become a fact

• Use your common sense!
 • What’s the logic?
 • Do you believe the changes and their magnitudes?
 • Can you explain it in laymen’s terms as well?