Dredging Processes

Dr.ir. Sape A. Miedema

4. Sand Cutting

Dredging A Way Of Life

Offshore A Way Of Life

Offshore & Dredging Engineering

Dr.ir. Sape A. Miedema Educational Director

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

Dry Sand

Dry Sand Mechanism

Dry Sand Forces on the Layer Cut

Dry Sand Forces on the Blade

Dry Sand Moments

Dry Sand Resulting Equations

$$K_2 = \frac{G \cdot \sin(\beta + \varphi) + I \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_h = K_2 \cdot \sin(\alpha + \delta)$$

$$F_{\nu} = K_2 \cdot \cos(\alpha + \delta)$$

Saturated Sand

Faculty of 3mE - Dredging Engineering

ρ

Saturated Sand Forces on the Layer Cut

Saturated Sand Forces on the Blade

Saturated Sand Moments

Saturated Sand Resulting Equations

$$K_2 = \frac{W_2 \cdot \sin(\alpha + \beta + \varphi) + W_1 \cdot \sin(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_h = -W_2 \cdot \sin(\alpha) + K_2 \cdot \sin(\alpha + \delta)$$

$$F_{\nu} = -W_2 \cdot \cos(\alpha) + K_2 \cdot \cos(\alpha + \delta)$$

Saturated Sand Dilatation

Saturated Sand Specific Flow

ft

Delft University of Technology Offshore & Dredging Engineering

Saturated Sand Mesh Coarse

Saturated Sand Equipotential Lines

Saturated Sand Equipotential Lines

Flow Lines

Saturated Sand

Determining the Shear Angle

The Influence of Wear

 $F_{\rm h}$

The Permeability Ratio

Saturated Sand Cutting Equations

Non-Cavitating Equations

$$F_{h} = \frac{c_{1} \cdot \rho_{w} \cdot g \cdot v_{c} \cdot h_{i}^{2} \cdot b \cdot e}{k_{m}}$$

$$F_{v} = \frac{c_{2} \cdot \rho_{w} \cdot g \cdot v_{c} \cdot h_{i}^{2} \cdot b \cdot e}{k_{m}}$$

Cavitating Equations

 $F_{h} = d_{1} \cdot \rho_{w} \cdot g \cdot (z+10) \cdot h_{i} \cdot b \qquad F_{v} = d_{2} \cdot \rho_{w} \cdot g \cdot (z+10) \cdot h_{i} \cdot b$

Cavitation Transition

$$\frac{\mathbf{d}_1 \cdot (\mathbf{z} + \mathbf{10})}{\mathbf{c}_1 \cdot \mathbf{v}_c \cdot \mathbf{h}_i \cdot \mathbf{e}_k} < 1$$

Cavitation

Pressure Transducers

Pore Pressures

Analytical method (parallel resistors)

Resistors

$$\frac{I}{R_{t}} = \frac{I}{R_{1}} + \frac{I}{R_{2}} + \frac{I}{R_{3}} + \frac{I}{R_{4}}$$

$$\Delta p = \rho_{w} \cdot g \cdot v_{c} \cdot e \cdot \sin(\beta) \cdot R_{t}$$

SPT value versus relative density SPT values versus relative density. 100.0 SPT = $(1.82 + 0.221 \cdot (z + 10)) \cdot 10^{-4} \cdot RD^{2.52}$ 90.0 80.0 70.0 60.0

SPT value in blows/305 mm

Normalised SPT values

The measured SPT value reduced to the SPT value at 10 m waterdepth for water saturated sand.

Offshore & Dredging Engineering

Internal Friction Angle vs SPT Value

Saturated Sand Specific Energy

$$E_{s} = \frac{P_{c}}{Q_{c}} = \frac{F_{h} \cdot v_{c}}{h_{i} \cdot b \cdot v_{c}} = d_{1} \cdot \rho_{w} \cdot g \cdot (z + 10)$$

$$\mathbf{E}_{s} = \boldsymbol{\rho}_{w} \cdot \mathbf{g} \cdot \left(\mathbf{z} + \mathbf{10}\right) \cdot \mathbf{d}_{1}$$

$$\mathbf{Q} = \frac{\mathbf{P}_{a}}{\mathbf{E}_{s}} = \frac{\mathbf{P}_{a}}{\boldsymbol{\rho}_{w} \cdot \mathbf{g} \cdot (\mathbf{z} + \mathbf{10}) \cdot \mathbf{d}_{1}}$$

 $d_1 = -0.185 + 0.666 \cdot e^{0.0444 \cdot \phi}$ 30 degree blade angle

$$d_1 = +0.304 + 0.333 \cdot e^{0.0597 \cdot \varphi}$$
 45 degree blade angle

 $d_1 = +0.894 + 0.154 \cdot e^{0.0818 \cdot \phi}$ 60 degree blade angle

$$E_{s} = \frac{P_{c}}{Q_{c}} = \frac{F_{h} \cdot v_{c}}{h_{i} \cdot b \cdot v_{c}} = d_{1} \cdot \rho_{w} \cdot g \cdot (z + 10)$$

Faculty of 3mE - Dredging Engineering

кРа

m³/hour

Production in Sand, 45 Degree Blade

Production per 100 kW 10000 1000 100 -10 100 SPT Waterlevel 0 m Waterlevel 5 m Waterlevel 10 m Waterlevel 15 m Waterlevel 20 m Waterlevel 25 m Waterlevel 30 m

Experiments

Laboratory Side View

Delft

Delft University of Technology Offshore & Dredging Engineering

Dredging Technology Research Lab.

Dredging Technology Research Lab.

A Model Rock Cutterhead

Model Cutter Heads

[1]

Cutting Blade Mounted

The Inclined Blade

Blades Mounted

Mounting System

- 4. Auxiliary Frame
- 6. Middle Blade Mounting
- 7. Dynamometer Middle Blade
- 8. Mounting Point Middle Blade
- 9. Side Blade Mounting
- 10. Dynamometers Horizontal Force Side Blades
- 11. Dynamometer Vertical Force Side Blades
- 12. Mounting Point Side Blade

olft

Delft University of Technology Offshore & Dredging Engineering

Dimensions

Camera

Window in Blade

Egaliser

Vibration Devices

Raw Data

Pore Pressures Long Blade

lft

Δ

Delft University of Technology Offshore & Dredging Engineering

Pore Pressures Short Blade

olft

Delft University of Technology Offshore & Dredging Engineering

Pore Pressures Start Cavitation

Pore Pressures Cavitation

Cutting Forces Horizontal Force

|f+

Delft University of Technology Offshore & Dredging Engineering

Cutting Forces Vertical Force

Verification of Cutting Theory

100

n

25 mm

30

50 mm

15

45

60

100 mm

Faculty of 3mE - Dredging Engineering

75

Cutting velocity in cm/s

25 mm

90

105

л

50 mm

120

Δ

135

100 mm

О

0

150

Snow Plough Effect 0 Degrees

Snow Plough Effect 45 Degrees

ft

How to determine friction

Saturated Sand With Wedge

Definitions

Forces on the Layer Cut

Forces on the Wedge

Forces on the Blade

olft

Delft University of Technology Offshore & Dredging Engineering

Path of Pore Water Flow

Specific Flow

Equi Potential Lines

Flow Lines

Pore Pressure Distribution

⊳lft

Delft University of Technology Offshore & Dredging Engineering

Parallel Resistors

Delft University of Technology – Offshore & Dredging Engineering

Moment as Function of the Wedge Angle

Front view of the carriage.

The blade mounted with the camera outside.

The window in the blade.

The camera behind the blade.

The forces on the wedge at 60 degrees.

The forces on the wedge at 120 degrees

The force diagrams at different blade angles (non-cavitating).

The wedge angle Teta and the shear angle Beta versus the blade angle Alpha (Phi=30 deg., non-cavitating)

The horizontal and vertical forces versus the blade angle Alpha (Phi=30 deg, non-cavitating)

The wedge angle Teta and shear angle Beta versus the blade angle Alpha (Phi=40 deg., non-cavitating)

The horizontal and vertical forces versus the blade angle Alpha (Phi=40 deg., non-cavitating)

The wedge angle Alpha, shear angle Beta and soil/interface friction angle Delta (Phi=30 deg., cavitating).

The cutting forces with and without the wedge (Phi=30 deg., cavitating).

The wedge angle Teta, shear angle Beta and soil/interface friction angle Delta (Phi=40 deg., cavitating).

The cutting forces with and without the wedge (Phi=40 deg., cavitating).

Phi=40 degrees, Delta=27 degrees

FUDDEIft Delft University of Technology Offshore & Dredging Engineering

ft

Delft University of Technology Offshore & Dredging Engineering

The transition of cutting forces with and without the wedge.

No cavitation:

$$\alpha = 90 - \frac{2}{3} \cdot \varphi$$

Cavitation:

$$\alpha = 90 - 0.014 \cdot \phi^2$$

Questions?

Sources images

- 1. A model cutter head, source: Delft University of Technology.
- 2. Off shore platform, source: Castrol (Switzerland) AG
- 3. Off shore platform, source: http://www.wireropetraining.com

100