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Introduction 

Topics of Module 1 
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• Understand the basic principles behind potential flow 

 

• To schematically model flows applying basic potential flow 
elements and the superposition principle 

 

• To perform basic flow computations applying potential flow 
theory 

Learning Objectives 

Chapter 3 
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Fluid Mechanics Laws 
Summarizing: 

 

 

 

 

 

 

 

 

 

 

 

• Conservation of mass (continuity):               Incompressible flow: 

 

 

 

 

• Conservation of momentum (inviscid flow): 

 

 

 

 

• Rotation of a fluid element:   Vorticity: 

ρ
𝐷𝑉

𝐷𝑡
= ρ𝑔 − 𝛻𝑝 

𝜕ρ

𝜕𝑡
+ 𝛻 ⋅ ρ𝑉 = 0 𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 𝛻 ⋅ 𝑉 = 0 

ω𝑦 =
1

2

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
 

ω𝑥 =
1

2

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 ω𝑧 =

1

2

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

ζ = 2ω = 𝛻 × 𝑉 
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Fluid Mechanics Laws 
Velocity Potential 

• Assumptions 

• Homogeneous 

• Continuous 

• Incompressible 

• Non-viscous (inviscid) 

• Irrotational flow 

 

• The velocity potential is a function of time and position: 

 

 
• The spatial derivatives of the velocity potential equal the velocity 

components at a time and position: 

 

Φ 𝑥, 𝑦, 𝑧, 𝑡  

𝜕Φ

𝜕𝑥
= 𝑢 

𝜕Φ

𝜕𝑦
= 𝑣 

𝜕Φ

𝜕𝑧
= 𝑤 
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Fluid Mechanics Laws 
Velocity Potential 

• Continuity equation for potential flow: 

 

 

 

 

• Irrotationality 

 

in the (x,y) plane 

 

 

in the (y,z) plane 

 

 

in the (x,z) plane 

 

 

𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑦2
+
𝜕2Φ

𝜕𝑧2
= 0 𝛻2Φ = 0 Laplace equation 

𝜕𝑣

𝜕𝑥
=
𝜕𝑢

𝜕𝑦
 

𝜕𝑤

𝜕𝑦
=
𝜕𝑣

𝜕𝑧
 

𝜕𝑢

𝜕𝑧
=
𝜕𝑤

𝜕𝑥
 

ω𝑦 =
1

2

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
 

ω𝑥 =
1

2

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 

ω𝑧 =
1

2

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
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Fluid Mechanics Laws 
Bernoulli Equation 

• Potential flow: 

 

 

 

 

 

 

 

• More general: also valid on a streamline 

 

 

 

 

 

 

 

𝑉 = 𝛻Φ 

𝜕Φ

𝜕𝑡
+
1

2
𝛻Φ

2
− 𝑔𝑧 +

𝑝

ρ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Bernoulli equation 

7 



Potential Flow 
Stream funtion (2D) 

•      is the (2D) stream function, with: 

 

 

 

• Difference of     between neighboring stream lines: rate of flow between 

streamlines 

 

• Orthogonality: 

 

 

• Impervious boundaries equals streamline: 

 

 

𝑑Ψ

𝑑𝑦
= 𝑢 

𝑑Ψ

𝑑𝑥
= −𝑣 

Ψ 

Ψ 

𝑑Ψ

𝑑𝑦
=
𝑑Φ

𝑑𝑥
= 𝑢 

𝑑Ψ

𝑑𝑥
= −

𝑑Φ

𝑑𝑦
= −𝑣 

𝑑Φ

𝑑𝑛
= 0 Ψ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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Potential flow elements 
Introduction 

• Using the previous we can define 'flow elements' 

 

• We can add these elements up to construct realistic flow patterns 

 

• Modeling of submerged bodies by matching streamlines to body outline 

 

• Using the velocity potential, stream function and Bernoulli equation to find 

velocities, pressures and eventually fluid forces on bodies 

 

• Discussed: 

• Uniform flow element 

• Source/sink element 

• Doublet element 

• Vortex element 
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Potential flow elements 
Uniform flow 

Φ = 𝑈 ⋅ 𝑥 

Ψ = 𝑈 ⋅ 𝑦 

𝑢 =
𝑑Φ

𝑑𝑥
=
𝑑Ψ

𝑑𝑦
= 𝑈 

Φ = −𝑈 ⋅ 𝑥 

Ψ = −𝑈 ⋅ 𝑦 

𝑢 =
𝑑Φ

𝑑𝑥
=
𝑑Ψ

𝑑𝑦
= −𝑈 

𝑦 

𝑥 

𝑈 
𝑦 

𝑥 

−𝑈 
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Potential flow elements 
Source and sink flow 

Ψ = +
𝑄

2π
⋅ θ = +

𝑄

2π
⋅ arctan

𝑦

𝑥
 

Φ = +
𝑄

2π
⋅ ln𝑟 = +

𝑄

2π
⋅ ln 𝑥2 + 𝑦2 

𝑦 

𝑥 

θ 

𝑟 

𝑠𝑜 

𝑦 

𝑥 

θ 

𝑟 

𝑠𝑖 

Ψ = −
𝑄

2π
⋅ θ = −

𝑄

2π
⋅ arctan

𝑦

𝑥
 

Φ = −
𝑄

2π
⋅ ln𝑟 = −

𝑄

2π
⋅ ln 𝑥2 + 𝑦2 
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Potential flow elements 
Source and sink flow 

Ψ = +
𝑄

2π
⋅ θ 

Φ = +
𝑄

2π
⋅ ln𝑟 

𝑦 

𝑥 

θ 
𝑟 

𝑠𝑜 

𝑣𝑟 =
𝜕Φ

𝜕𝑟
=
1

𝑟
⋅
𝜕Ψ

𝜕θ
=
𝑄

2π𝑟
 

𝑣θ =
1

𝑟
⋅
𝜕Φ

𝜕θ
= −

𝜕Ψ

𝜕𝑟
= 0 

12 



Potential flow elements 
Circulation or vortex elements 

Ψ = +
Γ

2π
⋅ ln𝑟 

Φ = +
Γ

2π
⋅ θ 

𝑦 

𝑥 

θ 

𝑟 

Γ 

𝑣𝑟 =
𝜕Φ

𝜕𝑟
=
1

𝑟
⋅
𝜕Ψ

𝜕θ
= 0 

𝑣θ =
1

𝑟
⋅
𝜕Φ

𝜕θ
= −

𝜕Ψ

𝜕𝑟
=
Γ

2π𝑟
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Potential flow elements 
Circulation or vortex elements 

Ψ = +
Γ

2π
⋅ ln𝑟 Φ = +

Γ

2π
⋅ θ 

𝑦 

𝑥 

θ 

𝑟 

Γ 

𝑣𝑟 =
𝜕Φ

𝜕𝑟
=
1

𝑟
⋅
𝜕Ψ

𝜕θ
= 0 

𝑣θ =
1

𝑟
⋅
𝜕Φ

𝜕θ
= −

𝜕Ψ

𝜕𝑟
=
Γ

2π𝑟
 

Circulation strenght constant: 

Γ =  𝑣θ ⋅ 𝑑𝑠 = 2π𝑟 ⋅ 𝑣θ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Therefore: no rotation, origin singular point: velocity infinite 
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Superposition 
Methodology (source in positive uniform flow) 

• The resulting velocity fields, potential fields or stream function 

fields may be simply superposed to find the combined flow 

patterns 

Uniform flow field Source flow field 

(Using stream function values) 
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Superposition 
Methodology (source in positive uniform flow) 

• The resulting velocity fields, potential fields or stream function 

fields may be simply superposed to find the combined flow 

patterns 
(Using stream function values) 
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Superposition 
Methodology (source in positive uniform flow) 

• The resulting velocity fields, potential fields or stream function 

fields may be simply superposed to find the combined flow 

patterns 
(Using stream function values) 
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Superposition 
Sink in negative uniform flow 

• Besides graphically this works also with formulas: 

 

 

 

 

 

 

 

 

 

For instance: 

Find location stagnation  

point (Blackboard...) 

Ψ = −
𝑄

2π
⋅ arctan

𝑦

𝑥
− 𝑈∞ ⋅ 𝑦 

Φ = −
𝑄

2π
⋅ ln 𝑥2 + 𝑦2 − 𝑈∞ ⋅ 𝑥 
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Superposition 
Separated source and sink 

Ψ𝑠𝑜𝑢𝑟𝑐𝑒 = +
𝑄

2π
⋅ θ1 = +

𝑄

2π
⋅ arctan

𝑦

𝑥1
 

2𝑠 

Ψ𝑠𝑖𝑛𝑘 = −
𝑄

2π
⋅ θ2 = −

𝑄

2π
⋅ arctan

𝑦

𝑥2
 

𝑥1 𝑥2 

Ψ =
𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
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Superposition 
Separated source and sink in uniform flow 

Ψ =
𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
+ 𝑈∞𝑦 

𝑠 𝑠 
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Superposition 
Separated source and sink in uniform flow 

Streamline resembles fixed boundary (Rankine oval) 

The flow outside this streamline resembles flow around solid boundary with this shape 

Shape can be changed by using more source-sinks along x-axis with different 

strenghts 

𝑠 𝑠 
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Superposition 
Separated source and sink in uniform flow 

This approach can be extended to form ship forms in 2D or 

3D: 

  Rankine ship forms 

 

Useful for simple flow computations 

𝑠 𝑠 
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Potential flow elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
 

Ψ = lim
𝑠→0

𝑄

π
𝑠 ⋅

𝑦

𝑥2 + 𝑦2 − 𝑠2
 

Note: in book errors wrt to doublet and 

its orientation! 

𝑠 𝑠 
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Potential flow elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Set constant:                 μ =
𝑄

π
𝑠 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
 

Ψ = lim
𝑠→0

𝑄

π
𝑠 ⋅

𝑦

𝑥2 + 𝑦2 − 𝑠2
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Potential flow elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Set constant:                 

Disappears when:                 𝑠 → 0 

μ =
𝑄

π
𝑠 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
 

Ψ = lim
𝑠→0

𝑄

π
𝑠 ⋅

𝑦

𝑥2 + 𝑦2 − 𝑠2
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Ψ = μ ⋅
𝑦

𝑥2 + 𝑦2
= μ ⋅

sinθ

𝑟
 

Potential flow elements 
Doublet or dipole 

When distance 2s becomes zero a new basic flow element is 

produced: 

 

 Doublet or dipole producing flow in positive x-direction 

Φ = −μ ⋅
𝑥

𝑥2 + 𝑦2
= −μ ⋅

cosθ

𝑟
 

Ψ = lim
𝑠→0

𝑄

2π
⋅ arctan

2𝑦𝑠

𝑥2 + 𝑦2 − 𝑠2
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Superposition 
Doublet in a uniform flow 

Φ = −μ ⋅
𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

Φ = −μ ⋅
cosθ

𝑟
− 𝑈∞𝑟cosθ 

Ψ = μ ⋅
𝑦

𝑥2 + 𝑦2
− 𝑈∞𝑦 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 

Doublet pointing in positive x-direction, uniform flow in negative x-

direction: 

+ 

Wrong in book! 
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Superposition 
Doublet in a uniform flow 

Ψ = μ ⋅
𝑦

𝑥2 + 𝑦2
− 𝑈∞𝑦 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 

Set            then: 

Ψ = 𝑦
μ

𝑥2 + 𝑦2
− 𝑈∞ = 0 

Ψ = 0 True when: 

𝑦 = 0 

μ

𝑥2 + 𝑦2
− 𝑈∞ = 0 𝑥2 + 𝑦2 =

μ

𝑈∞
 

Φ = −μ ⋅
𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

Φ = −μ ⋅
cosθ

𝑟
− 𝑈∞𝑟cosθ 
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• The radius of the circle: 

 

 

 

• Doublet strength needed for radius R: 

 

 

 

• This yields the following: 

Superposition 
Doublet in a uniform flow: flow around a circle 

𝑅 =
μ

𝑈∞
 

μ = 𝑈∞𝑅
2 

Φ = −
𝑈∞𝑅

2cosθ

𝑟
− 𝑈∞𝑟cosθ = −𝑅𝑈∞

𝑅

𝑟
+
𝑟

𝑅
cosθ 

Ψ =
𝑈∞𝑅

2sinθ

𝑟
− 𝑈∞𝑟sinθ = 𝑅𝑈∞

𝑅

𝑟
−
𝑟

𝑅
sinθ 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 

Φ = −μ ⋅
cosθ

𝑟
− 𝑈∞𝑟cosθ 
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Superposition 
Doublet in a uniform flow: flow around a circle 

Φ = −𝑅𝑈∞
𝑅

𝑟
+
𝑟

𝑅
cosθ 

Φ = −𝑈∞𝑅
2 ⋅

𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑥2 − 𝑦2

𝑥2 + 𝑦2
2 − 𝑈∞ 
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Superposition 
Doublet in a uniform flow: flow around a circle 

𝑥 = ±𝑅, 𝑦 = 0 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑅2 − 02

𝑅2 + 02
2 − 𝑈∞ = 𝑈∞𝑅

2
𝑅2

𝑅4
− 𝑈∞ = 0 

Φ = −𝑅𝑈∞
𝑅

𝑟
+
𝑟

𝑅
cosθ 

Φ = −𝑈∞𝑅
2 ⋅

𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑥2 − 𝑦2

𝑥2 + 𝑦2
2 − 𝑈∞ 

Stagnation 

points! 
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Superposition 
Doublet in a uniform flow: flow around a circle 

𝑥 = 0,  𝑦 = ±𝑅 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
02 − 𝑅2

02 + 𝑅2
2 − 𝑈∞ = −𝑈∞𝑅

2
𝑅2

𝑅4
− 𝑈∞ = −2𝑈∞ 

Φ = −𝑅𝑈∞
𝑅

𝑟
+
𝑟

𝑅
cosθ 

Φ = −𝑈∞𝑅
2 ⋅

𝑥

𝑥2 + 𝑦2
− 𝑈∞𝑥 

𝑢 =
𝑑Φ

𝑑𝑥
= 𝑈∞𝑅

2
𝑥2 − 𝑦2

𝑥2 + 𝑦2
2 − 𝑈∞ 
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Superposition 
Evaluate velocities on cylinder wall 

• Generally, velocity on cylinder wall: 

𝑣θ 𝑟 = 𝑅 = −
𝜕Ψ

𝜕𝑟
𝑟=𝑅

= −
𝜕

𝜕𝑟

𝑈∞𝑅
2sinθ

𝑟
− 𝑈∞𝑟sinθ =. . . = 2𝑈∞sinθ 

Ψ = μ ⋅
sinθ

𝑟
− 𝑈∞𝑟sinθ 
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Superposition 
Evaluate pressures on cylinder wall 

• Use the Bernoulli equation: 

 

 

 

 

 

 

 

 

 

 

 

• Result: 

1

2
ρ𝑈∞

2 + 0 = 𝑝 +
1

2
ρ𝑣θ
2 

Pressure at stagnation points: 

 

 

 

Assuming constant elevation 

Pressure at cylinder boundary: 

𝑣 = 0 𝑣𝑟 = 0 

𝑣θ = −2𝑈∞sinθ 

𝑝 =
1

2
ρ𝑈∞

2 1 − 4sin2θ  
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Superposition 
Evaluate pressures on cylinder wall 

• Velocity profile: 

 

• Pressure profile: 

 

 

𝑣θ = −2𝑈∞sinθ 

𝑝 =
1

2
ρ𝑈∞

2 1 − 4sin2θ  

stagn.pt stagn.pt 

stagn.pt 
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Superposition 
Evaluate pressures on cylinder wall 

• Velocity profile: 

 

• Pressure profile: 

 

 

𝑣θ = −2𝑈∞sinθ 

𝑝 =
1

2
ρ𝑈∞

2 1 − 4sin2θ  

stagn.pt stagn.pt 

stagn.pt 

•No net resulting force!!! 

•D'Alembert's Paradox 
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Superposition 
Pipeline near seabed 

• How to calculate the flow around a pipeline near the seabed? 

𝑦0 

𝑦 
𝑈∞ 
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Superposition 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

 

• Result is zero normal 

flow on seabed 
𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

 

• Result is zero normal 

flow on seabed 

 

 

 

• Is flow exactly right? 

𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition 
Pipeline near seabed 

• Mirror flow in seabed! 

• Superpose flows: 
• undisturbed 

• cylinder 

• mirrored cylinder 

 

• Result is zero normal 

flow on seabed 

 

 

 

• Is flow exactly right? 
NO: interaction  

cylinders not modeled! 

𝑦0 

𝑦 𝑈∞ 

𝑦0 
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Superposition 
Circulation 

• Add circulation (or vortex flow element) to doublet in uniform flow 

• Resulting velocity field: 

𝑈∞ 

θ 

𝑟 

Γ + + 
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Superposition 
Circulation 

• Add circulation (or vortex flow element) 

• Resulting velocity field: 
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Superposition 
Circulation 

• Add circulation (or vortex flow element) 

• Resulting velocity field: 
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Superposition 
Circulation 

• Add circulation (or vortex flow element) 

• Resulting velocity field: 

- 

+ 
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Superposition 
Circulation 

• Now integration of pressure yields a net force perpendicular to the 

undisturbed flow direction: the lift force 

 

• However: still no net force in the flow direction: no drag 
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Sources images 

All images are from the book  Offshore Hydromechanics  by Journée and Massie. 
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