Offshore Hydromechanics Part 2

Ir. Peter Naaijen

4. Potential Theory continued

				-
Disclaimer: alw	avs track for (last m	inute) changes in location at 1	buidigeroosters tude	it oll
Date :	Time:	Type:	Teacher:	Location
Wed 14 Nov	13.30-16.30	Lecture	Peter Naaijen	3mE-CZD (James Watt)
Wed 14 Nov	16.30-17.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ D (James Watt)
Fri 16 Nov	10.30-12.30	Lecture	Peter Naaijen	3mE-CZ8 (Isaac Newton)
Mon 19 Nov	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Tue 20 Nov	13.30-15.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ C (Daniel Bernoulli)
Wed 28 Nov	13.30-15.30	Lecture	Peter Naaijen	3mE-CZD (James Watt)
Wed 28 Nov	15.30-17.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZD (James Watt)
Fri 30 Nov	10.30-13.00	Lab session	Peter Naaijen	Towing Tank
Mon 3 Dec	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Tue 4 Dec	13.30-16.00	Lab session	Gideon Hertzberger	Towing Tank
Tue 4 Dec	16.30-17.30	Assignment assistance /Questions	Peter Naaijen	Room Peter Naaijen (34 B 0 360)
Mon 10 Dec	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Mon 17 Dec	15.30-17.30	Lecture	Peter Naaijen	3mE-CZB (Isaac Newton)
Mon 7 Jan	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)

Learning goals Module II, behavior of floating bodies in waves	
Definition of ship motions Motion Response in regular waves: How to use RAO's understand the terms in the equation of motion: hydromechanic reaction forces, wave exciting forces How to salve RAO's from the equation of motion	
Motion Response in irregular waves: +How to determine response in irregular waves from RAO's and wave spectrum without forward speed	
3D linear Potential Theory +How to determine hydrodynamic reaction coefficients and wave forces from Velocity Potential +How to determine Velocity Potential	
Motion Response in irregular waves: • How to determine response in irregular waves from RAO's and wave spectrum with forward speed	Ch. 8
 Make down time analysis using wave spectra, scatter diagram and KAU's 	
Structural aspects: • Calculate internal forces and bending moments due to waves	
Nonlinear behavior: • Calculate mean horizontal wave force on wall • Use of time domain motion equation	Ch.6
OE4630 2012-2013, Offshore Hydromechanics, Part 2	6
Marine Engineering, Ship Hydromechanics Section	

Marine Engineering, Ship Hydromechanics Section

Motions of and about COG	
1 Surge(schrikken): $x = x_{a} \cos(\omega_{a}t + \varepsilon_{a'})$	
2 Sway(verzetten): $y = y_a \cos(\omega_e t + \varepsilon_{y_c})$	
3 Heave(dompen): $z = z_a \cos\left(\omega_e t + \varepsilon_{s_a}\right)$	
$4 \ Roll(rollen): \qquad \langle phi \rangle \phi = \phi_a \cos\left(\omega_e t + \varepsilon_{\phi_a^c}\right)$	
5 <i>Pitch(stampen)</i> : $\langle \text{theta} \rangle \theta = \theta_a \cos(\omega_c t + \varepsilon_{\theta_s})$	
6 Yaw(gieren): $\langle psi \rangle \Psi = \Psi_a \cos \left(\omega_a t + \varepsilon_{\Psi_a^c} \right)$	
 Frequency of input (regular wave) and output (motion) is ALWAYS THE SAME !! Phase can be positive ! (shipmotion ahead of wave elevation at COG) Due to symmetry: some of the motions will be zero Ratio of motion amplitude / wave amplitude = <u>RAO (Response Amplitude Operator)</u> RAO's and phase angles depend on wave frequency and wave direction RAO's and phase angles must be calculated by dedicated <u>software</u> or measured by <u>e</u> Only some special cases in which 'common sense' is enough: 	<u>xperiments</u>
CE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID	34
Marine Engineering, Ship Hydromechanics Section	

Right hand side of m.e.: Wave Exciting Forces Incoming: regular wave with given frequency and propagation direction Assuming the vessel is not moving

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID

59

TUDelft

From definition of velocity potential:

$$\begin{aligned}
\mu &= \frac{\partial \Phi}{\partial x}, \nu &= \frac{\partial \Phi}{\partial v}, w &= \frac{\partial \Phi}{\partial z} \\
\text{Substituting in continuity equation:} \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \\
\text{Results in Laplace equation:} \\
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0
\end{aligned}$$

Learning goals Module II, behavior of floating bodies in waves	
Definition of ship motions Motion Response in regular waves: How to set RAD's orderstand the terms in the equation of motion: hydromechanic reaction forces, were excling forces How to set RAD's from the equation of motion: Motion Response in irregular waves: "Move to determine response in irregular waves:	Ch.6
3D linear Potential Theory +How to determine hydrodynamic reaction coefficients and wave forces from Velocity Potential +How to determine Velocity Potential	Ch. 7
Motion Response in irregular waves: • Nov to determine response in irregular waves from RAO's and wave spectrum with forward speed • Determine probability of exceedence • Nake down time analysis using wave spectra, scatter diagram and RAO's	Ch. 8
Structural aspects: + Calculate internal forces and bending moments due to waves	Ch. 8
Nonlinear behavior: • Calcidate mean horizontal wave force on wall • Use of time domain motion equation	
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 10)4
Marine Engineering, Ship Hydromechanics Section	

L	earning goals Module II, behavior of floating bodies in waves	
	Definition of Ship motions Otion Response in regular waves: How to use RAO's How to use RAO's How to set RAO's How to set waves How to set waves How to set waves How to determine response in imegular waves from RAO's and wave spectrum without forward speed	Ch.6
<u>A A</u>	D Insar Potential Theory c Kou to determine Involvation coefficients and wave forces from Velocity Potential Today was to determine Velocity Potential Today	lh. 7
	otion Response in irregular waves: INEXT WEEK C Now to determine response in irregular waves from RAO's and wave spectrum with forward speed C Determine probability of exceedence Mexic Voir Mexic analysis using wave spectra, scatter diagram and RAO's C	1h. 8
:	tructural aspects: Calculate internal forces and bending moments due to waves	Jh. 8
	onlinear behavior: Calculate mean horizontal wave force on wall Use of time domain motion equation	.h.6
í	UDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 105	
м	rine Engineering, Ship Hydromechanics Section	

Calculating hydrodynamic coefficcients and diffraction force $(m+a):z+b:z+c\cdot z = F_w = F_{FK} + F_D$ m and c = piece of cake $F_{FK} = almost easy$ $a, b, \text{ and } F_D = kind \text{ of difficult} \longrightarrow Ch. 7$

OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 116
Marine Engineering, Ship Hydromechanics Section

Marine Engineering, Ship Hydromechanics Section

Marine Engineering, Ship Hydromechanics Section

Solving the Laplace equation coupled equation of motion:
$ \begin{bmatrix} M + a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & M + a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & M + a_{33} & a_{34} & a_{35} & a_{36} \\ a_{31} & a_{32} & M + a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & a_{43} & I_{34} + a_{44} & a_{55} & a_{66} \\ a_{51} & a_{22} & a_{23} & a_{34} & a_{35} & a_{36} \\ a_{61} & a_{62} & a_{63} & a_{44} & a_{55} & a_{66} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & I_{zz} + a_{66} \end{bmatrix} \begin{bmatrix} M & M & M & M & M & M & M \\ M & M & M & M & M & M \\ A_{51} & L_{52} & L_{53} & L_{56} \\ M & M & L & L & L & L \\ A_{51} & L & L & L & L \\ A_{51} & L & L & L & L \\ A_{51} & L & L & L & L \\ A_{51} & L & L & L & L \\ A_{51} & L & L & L & L \\ A_{52} & L & L & L \\ A_{51} & L \\ \mathsf$
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 123 Marine Engineering, Ship Hydromechanics Section

Learning goals Module II, behavior of floating	
bodies in waves	
Definition of ship motions Motion Response in regular waves: How to use RADs Understand the tarms in the equation of motion: hydromechanic reaction forces, were exciting forces	
How to solve RAO's from the equation of motion	
Motion Response in integular waves: 4 How to determine response in integular waves from RAO's and wave spectrum without forward speed	
3D linear Potential Theory +How to determine Involcolynamic reaction coefficients and wave forces from Velocity Potential +How to determine Velocity Potential	Ch. 7
Motion Response in Irregular waves: How to determine response in Irregular waves from RAO's and wave spectrum with forward speed Determine probability of exceedence Make down time analysis using wave spectra, scatter diagram and RAO's	Ch. 8
Structural aspects: • Calculate internal forces and bending moments due to waves	Ch. 8
Nonlinear behavior: • Calculate mean honoratal wave force on wall • Use of time domain motion equation	Ch.6
CE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 1	30
Marine Engineering, Ship Hydromechanics Section	

Sources images

- [1] Towage of SSDR Transocean Amirante, source: Transocean
- [2] Tower Mooring, source: unknown
- [3] Rogue waves, source: unknown
- [4] Bluewater Rig No. 1, source: Friede & Goldman, LTD/GNU General Public License
- [5] Source: unknown
- [6] Rig Neptune, source: Seafarer Media
- [7] Pieter Schelte vessel, source: Excalibur
- [8] FPSO design basis, source: Statoil
- [9] Floating wind turbines, source: Principle Power Inc.
- [10] Ocean Thermal Energy Conversion (OTEC), source: Institute of Ocean Energy/Saga University
- [11] ABB generator, source: ABB
- [12] A Pelamis installed at the Agucadoura Wave Park off Portugal, source: S.Portland/Wikipedia
- [13] Schematic of Curlew Field, United Kingdom, source: offshore-technology.com
- [14] Ocean Quest Brave Sea, source: Zamakona Yards
- [15] Medusa, A Floating SPAR Production Platform, source: Murphy USA

