Traffic Flow Theory & Simulation

S.P. Hoogendoorn

Lecture 4 Shockwave theory

Shockwave theory I: Introduction

Applications of the Fundamental Diagram

February 14, 2010

Delft University of Technology

Intro to shockwave analysis

- Introduce application of fundamental diagram to shockwave analysis with aim to understand importance of field location
- Shockwave analysis:
 - Vehicles are conserved
 - Traffic acts according to the fundamental diagram (q = Q(k))
 - Predicts how inhomogeneous conditions change over time
- FOSIM demonstration
 - Example 3 -> 2 lane drop and emerging shockwaves (roadworks, incident, etc.)

February 14, 2010

FOSIM example

- Extremely short introduction to FOSIM
 - Build a simple network (8 km road with roadworks at x = 5 km to 6 km)
 - Implement traffic demand
 - Assume 10% trucks
- Suppose that upstream traffic flow > capacity of bottleneck
- What will happen?

Questions

- Why does congestion occur
 - Macroscopically?
 - Microscopically?

Photo by My Europe

Photo by Juicyrai on Flickr / CC BY NC

Microscopic description

- Congestion at a bottleneck
- Simplest is to compare the system to a (sort of) queuing system
- Drivers arrive at a certain rate (demand) at specific time intervals
- The n'servers' needs a minimum amount of time to process the drivers (each lane is a server)
- Service time T is a driver-specific (random) variable depending on weather conditions, road and ambient conditions, etc.
 (= minimum time headway of a driver)
- Note that service time is directly related to car-following behavior
- When another driver arrives when the server is still busy, he / she has to wait a certain amount of time
- Waiting time accumulates -> queuing occurs

Macroscopic description

- Compare traffic flow to a fluidic (or better: granular) flow though a narrow bottleneck (hour-glass, funnel)
- If traffic demand at a certain location is larger than the supply (capacity) congestion will occur
- Capacity is determined by number of lanes, weather conditions, driver behavior, etc.
- Excess demand is stored on the motorway to be served in the next time period

Photo by My Europe

• Remainder: focus on **macroscopic** description

Questions

- Why does congestion occur
 - Macroscopically?
 - Microscopically?
- Where does congestion first occur?
- Which traffic conditions (traffic phases) are encountered?
- Where are these conditions encountered?

Definition of a shockwave

Consider over-saturated bottleneck

February 14, 2010

• Traffic conditions change over space and time

- Boundaries between traffic regions are referred to as shockwaves
- Shockwave can be very mild (e.g. platoon of high-speed vehicles catching up to a platoon of slower driver vehicles)
- Very significant shockwave (e.g. free flowing vehicles approaching queue of stopped vehicles)

Definition of a shockwave²

- Shockwave is thus a boundary in the space-time domain that demarks a discontinuity in flow-density conditions
- Example: growing / dissolving queue at a bottleneck

Fundamental diagrams

- What can we say about the FD at the different locations?
- Some 'standard' numbers (for Dutch motorways)
 - Capacity point ≈ n * 2200 pce/h/lane
 - Critical density ≈ n * 25 pce/km/lane
 - Jam-density ≈ n * 2200 pce/km/lane
 - Critical speed \approx 85 km/h
 - Free speed: to be determined from speed limit
- pce = 'person car equivalent'
- Exact numbers depend on specific characteristics of considered location (traffic composition, road conditions, etc.)

February 14, 2010

Emerging traffic states

Emerging traffic states

Shockwave equations

- Assume that flow-density relation Q(k) is known for all location x on the road (i.e. different inside and outside bottleneck!)
- Consider queue due to downstream bottleneck
- Consider conditions in the queue
 - Flow q₂ = C_{b-n} (capacity downstream bottleneck)
 - Speed, density follow from q_2 , i.e. $u_2 = U(q_2)$ and $k_2 = q_2/u_2$
- Farther upstream of queue, we have conditions (k₁,u₁,q₁)
- Speed $u_1 > u_2 \rightarrow$ upstream vehicles will catch up with vehicles in queue

Shockwave equations²

Shockwave equations³

Shockwave equations⁴

- Relative speed traffic flow region 1 with respect to S: $u_1 \omega_{12}$
- Thus flow out of region 1 into shock S equals (explanation)

$$q_{\rm S}^{\rm in} = k_1 \left(u_1 - \omega_{12} \right)$$

- Relative speed traffic flow region 2 with respect to S: $u_2 \omega_{12}$
- Thus flow into region 2 out of the shock must be $q_{s}^{out} = k_{2} \left(u_{2} \omega_{12} \right)$
- Conservation of vehicles over the shock (shock does not destroy or generate vehicles)

$$q_{s}^{in} = q_{s}^{out} \quad \iff \quad k_{1} \left(u_{1} - \omega_{12} \right) = k_{2} \left(u_{2} - \omega_{12} \right)$$

February 14, 2010

Shockwave equations⁵

• Shockwave speed ω_{12} thus becomes

$$\omega_{12} = \frac{k_2 u_2 - k_1 u_1}{k_2 - k_1} = \frac{q_2 - q_1}{k_2 - k_1}$$

- The speed of the shock equals the ratio of
 - jump of the flow over the shock S and
 - jump in the density over the shock S

Shockwave equations⁶

Shockwave equations⁷

- Remarks:
 - If k₂ > k₁ sign shockwave speed negative if q₁ > q₂ (backward forming shockwave)
 - If k₂ > k₁ sign shockwave speed positive if q₁ < q₂ (forward recovery shockwave)
 - If k₂ > k₁ sign shockwave speed zero if q₁ = q₂ (backward stationary)

<u>Classification of shockwaves</u>

Final remarks

- Shockwave theory is applicable when
 - Q(k) is known for all location x
 - Initial conditions are known
 - Boundary conditions (at x₁ AND x₂) are known
- Shockwaves occur when
 - Spatial / temporal discontinuities in speed-flow curve (expressed Q(k,x)), e.g. recurrent bottleneck
 - Spatial discontinuities in initial conditions
 - Temporal discontinuities in boundary conditions at x₁ (or x₂)

21

Applications of shockwave theory

Temporary over-saturation Traffic lights

February 14, 2010

Delft University of Technology

Shockwaves at a bottleneck

- Temporary over-saturation of a bottleneck
- Traffic demand (upstream)

February 14, 2010

 $q(t) = \begin{cases} q_1 & t < t_1 \text{ or } t \ge t_2 \\ q_2 & t_1 \le t < t_2 \end{cases}$

Application of shockwave analysis

Three simple steps to applying shockwave theory:

- 1. Determine the Q(k) curve for all locations x
- 2. Determine the following 'external conditions':
 - initial states $(t = t_0)$
 - 'boundary' states (inflow, outflow restrictions, moving bottleneck).

present in the x-t plane and the q-k plane

- 3. Determine the boundaries between the states (=shockwaves) and determine their dynamics
- 4. Check for any ommisions you may have made (are regions with different states separated by a shockwave?)

Shockwaves at bottleneck²

Exercise temporary blockade

Studies of the fundamental diagram

- Need for complete diagram or only a part of it? Will it in general be possible to determine a complete diagram at a cross-section?
- Is the road section homogeneous? Yes: observations at a single cross-section. No: road characteristics are variable over the section and a method such as MO might be suitable
- Mind the period of analysis:
 - too short (1 minute): random fluctuations much influence;
 - too long (1 hour): stationarity cannot be guaranteed (mix different regimes)
- Estimate parameters of the model chosen using (non-linear) regression analysis

27

Studies of the fundamental diagram²

- Many models will fit your data
- Hints for choosing models?
- Simplest model possible (parsimony)
- Interpretation of parameters
- Theoretical considerations

28

Studies of the fundamental diagram³

- Demonstration
 FOSIM
- Fundamental diagram determined from real-life data, by assuming stationary periods
- Dependent on measurement location
- Flow per lane

February 14, 2010

Studies of the fundamental diagram⁴

Estimation of free flow capacity using fundamental diagram

- Approach 1:
 - Fit a model q(k) to available data
 - Consider point dq/dk = 0
 - Generally not applicable to motorway traffic because dq/dk = 0 does not hold at capacity
- Approach 2:
 - Assume fixed value for the critical density k_c
 - Estimate only free-flow branch of the diagram
 - More for comparative analysis

Studies of the fundamental diagram⁵

- <u>Application example</u>: effect of roadway lighting on capacity
- Two and three lane motorway
- Before after study
 - Difficulties due to different conditions (not only ambient conditions change)
 - See e.g. site SB daylight before after
 - Effect lighting on capacity approx 2.5% (2 lane) or 1.6% (3 lane)

	Daylight		Darkness	
	Before	After	Before	After
Site I NB Treatment	100	99.1	90.3	92.9
Site I SB Treatment	100	96.8	93.5	95.4
Site II Treatment	100	100.4	95.5	97.1
Site III Comparison	100	98.8	95.1	94.4

February 14, 2010

Studies of the fundamental diagram⁶

• Effect on rain on capacity / fundamental diagram

Studies of the fundamental diagram⁷

• Effect on rain on capacity / fundamental diagram

Studies of the fundamental diagram⁸

- Estimating <u>queue discharge</u> rate
- Only in case of <u>observations of oversaturated bottleneck</u>
- Three measurement locations (ideally)
 - Upstream of bottle-neck (does overloading occur?)
 - Downstream of bottle-neck (is traffic flow free?)
 - At the bottle-neck (intensities are capacity measurements if traffic state upstream is congested and the state downstream is free)
- Flow at all three points equal (stationary conditions) and at capacity; use downstream point

February 14, 2010

Summary of lecture

- Fundamental diagram for a lane and a cross-section
- Shockwave equations
- Application of shockwave analysis
 - shockwave at bottleneck
- Establishing a fundamental diagram from field observations

Shockwaves signalized intersections

Shockwave classification

- 6 types of shockwaves
- Which situations do they represent? Examples?

Shockwave classification²

- 1. <u>Frontal stationary</u>: head of a queue in case of stationary / temporary bottleneck
- 2. <u>Forward forming: moving bottleneck</u> (slow vehicle moving in direction of the flow given limited passing opportunities)
- 3. <u>Backward recovery</u>: dissolving queue in case of stationary or temporary bottleneck (demand l.t. supply); forming or dissolving queue for moving bottleneck

Shockwave classification³

- 1. <u>Forward recovery</u>: removal of temporary bottleneck (e.g. clearance of incident, opening of bridge, signalized intersection)
- <u>Backward forming</u>: forming queue in case of stationary, temporary, or moving bottleneck* (demand g.t. supply);
- 3. <u>Rear stationary</u>: tail of queue in case recurrent congestion when demand is approximately equal to the supply

Flow into schockwave

- Consider a shockwave moving with speed ω_{12}
- Flow into the shockwave = flow observed by moving observer travelling with speed of shockwave

February 14, 2010

- Number of vehicles observed on S =
 - + Veh. passing x₀ during T
 - Vechicles on X at t₁

$$\begin{aligned} \mathbf{q}_{\text{in}}^{\text{S}} \mathbf{T} &= \mathbf{q}_{1} \mathbf{T} - \mathbf{k}_{1} \mathbf{X}, \quad \mathbf{X} = \boldsymbol{\omega}_{12} \mathbf{T} \\ \mathbf{q}_{\text{in}}^{\text{S}} \mathbf{T} &= \left(\mathbf{k}_{1} \mathbf{u}_{1} - \mathbf{k}_{1} \boldsymbol{\omega}_{12}\right) \mathbf{T} \\ \mathbf{q}_{\text{in}}^{\text{S}} &= \mathbf{k}_{1} \left(\mathbf{u}_{1} - \boldsymbol{\omega}_{12}\right) \end{aligned}$$

