

What is it?

What is it?

- Taking care of the functioning of the sewer system
 - Technical: maintenance, replacement
 - Financial: costs
 - Management and organization: responsibilities, decision process, argumentation

Why?

History of sam

- Since 1900 building sewer networks
- Attention since 1980s
 - Poor condition
 - A lot of buried money!
- Policies: sewer taxes & strategic plans

- Reactive → proactive
- Computers

History of sam

Reactive

Fix what is broken

Proactive

Observe and act

Predictive

Foresee and act

SAM: Homo economicus

- Problem?
- Alternatives?
- Choice?

- Problem?
- Alternatives?
- Choice?

- Problem?
- Alternatives?
- Choice?

Theoretical framework

- Control paradigm (De Leeuw, 1974)
 - 1. Objective and evaluation
 - 2. Model of system
 - 3. Information system and environment
 - 4. Sufficient control actions
 - 5. Information processing capacity

Strategic municipal sewerage plan

- Obligation!
- Meant to stimulate systematic asset management
- Policy objectives
 - Why, what and how?
- Costs
 - Measures and personnel
 - Taxes

1. Evaluate goals of previous period

- Cost effective collection of water and transport to wwtp or surface water
- Reduce pollution emission to surface water, soil and groundwater
- Prevent and reduce nuisance to community
- Cost effective management of the sewer system

2. What did you achieve?

- Planned measures are realised
- We cooperated with other works in public space as much as possible
- We have knowledge about the performance of the sewer system
- We have knowledge about costs on the short and long term

3. What did you learn?

- We could not execute all measures
- Knowledge about the sewer system is a prerequisite for sound management

4. What are our goals?

- Cost effective collection of water and transport to wwtp or surface water
- Reduce pollution emission to surface water, soil and groundwater
- Prevent and reduce nuisance to community
- Cost effective management of the sewer system

5. What are we going to do and where?

Data about system & environment

6. What does it cost?

- Costs for projected measures, inspection, research, cleaning, etc.
- Divide by number of connections \approx sewer tax
- Number of staff

Conclusion?

- Is it useful?
- Are we able to learn?

Preconditions met?

- 1. Objective and evaluation
- 2. Model of system
- 3. Information system and environment

VS.

Plan-Do

Plan-Do-Check-Act

Preconditions: model en information

- 1. Objective and evaluation
- 2. Model of system
- 3. Information system and environment

System data: pipe quality

- Deterioration processes
 - Individual pipes
 - Cohort of pipes
- Highly complex (many interacting variables), not well understood
 Result: difficult to predict pipe failure

System data: pipe quality

- Current use: pipe age & visual inspections (CCTV)
- Plus
 - Insight into current status and potential failures
- Issues:
 - Converting detailed, location specific data to larger scales
 - Weight/importance per defect
 - Interdependence of observations
 - Snapshots in time, no data series
- Conclusion: difficult to predict pipe failure

System data: system performance

Current use

- Hydraulic model
- Measurements (flow at pumping stations, overflows, wwtp, subsidence)
- Complaints: call data

Plus

Model: relatively cheap, fast and easy to do

Issues

- Large differences with reality
- Measurement data is scarce
- Point measurements in space and time
- Converting measured data into knowledge
- Conclusion: difficult to predict performance

Data environment

- Why?
- Current use
 - Soil characteristics
 - Road manager
 - Green manager
 - Urban development projects
 - Traffic intensity
 - Citizens' complaints
- Plus
 - Reduce costs and nuisance by integration of works
- Issues
 - No guidelines or references: use of 'common sense'
 - Not reproducible
 - Preventing evaluation

• What information do you need?

Influence on you as manager

Replace house connections?

Citizens friends with mayor

Roots in pipes

Hard to predict pipe quality

Highly educated citizens: to court

Authentic street view

Old trees, risk of falling over? Street surface needs renewal

Repair hole, or replace pipes?

Citizens can still flush toilets

Example: Dijkhuizen

Example Dijkhuizen

• What would you do?

Influence on you as manager

What is the system we want?

Who pays what?

Is renewal needed?

Wait for failure to get

approval from citizens?

Forbidden to build on that area

Damage each garden

Situation like this for 20 years

Compensate inhabitants?

Not manageable now

Preconditions met?

- 1. Objective and evaluation
- 2. Model of system
- 3. Information system and environment

Homo economicus valid?

Research: decision-making

Two aspects

Decision process for sewer replacement

Five-year budget allocation

Information use five-year budget

- Analysis municipal sewerage plan
 - Age (7/7)
 - Camera inspection (6/7)
 - Soil subsidence (1/7)
 - Public works (1/7)
 - Other...?

Information use

- Camera inspection
- Age
- Hydraulic model
- Soil subsidence
- Public works
- Urban development
- Traffic density
- Water management strategies
- National policies

Information use

- Camera inspection
- Age
- Hydraulic model
- Soil subsidence
- Public works
- Urban development
- Traffic density
- Water management strategie
- National policies

Gut feeling!

Information use

Implicit risk analysis (feeling x consequence)

Technical renewal need

- Pipe collapse
- Insufficient hydr. performance

Synergy with other works

- Nuisance to citizens
- Higher costs
- Traffic disruption

Summary

Theory

- Rational
- System quality and performance
- Compare with requirements
- Develop plan

Practice

- Complex
- Limited learning experience
- Data of limited quality
- Interactions and influences
- Difficult to be a manager: weigh system data and interactions/influences

Still...

- Sewer system managers use their best available knowledge
- Are multidisciplinary people
- Hardly any problems
- Why?

Because...

- Use of intuitive judgments
- Better to be safe than sorry
 - Is the current system performance too good?
 - We don't know

What do we need?

- → Research:
 - → the decision processes
 - → Use of information vs intuition
 - → Influence information vs intuition

Questions?

Wouter van Riel w.a.p.vanriel@tudelft.nl Room 4.64

