

CIE4801 Transportation and spatial modelling Land-use and transport interaction models (TIGRIS) and choice modelling (+reprise)

Rob van Nes, Transport & Planning 31-08-18

Content

• Land-use and transport interaction models (LUTI)

- TIGRIS (Schoemakers & Van den Hoorn)
- TIGRIS XL (Zondag & De Jong)
- TIGRIS XL Applications
- Choice modelling for land-use
 - Firm location behaviour (De Bok)
 - Household location behaviour (Blijie & De Vries)
- Circle of Wegener revisited

2.1

Land-use and transport interaction models

Integration of land-use models and transport models

- Circle of Wegener implies that transport models and spatial models should be integrated
- Simplest combination is a transport model combined with e.g. a Lowry model
- However, spatial modelling is not as straightforward as a Lowry-model.....

LUTI models: Framework

Land-use model structure (e.g. UrbanSim)

Accessibility model

determines the accessibility level, depending on transport model outcomes

Demographic & economic transition model determines creation or loss of households and jobs

Household & employment mobility model determines if households and jobs are moving within the region

Household & employment location model determines the location choices of households and jobs from

available vacant real-estate

Real-estate development model

determines the type, location, and quantity of new construction by developers

Land price model

Where does the transport model fit in?

6

determines the price of land at each location

t+1

||

2.2

TIGRIS and TIGRIS XL

TIGRIS

- <u>Transport Infrastructure Land-use ('Grondgebruik')</u> <u>Interaction Simulation</u>
- Developed in the 90's
- Primarily based on expert judgement
 - Model structure as well as parameters
- Meant to be a sketch-planning model
 - GIS-based, incremental development (year by year), dashboard

TIGRIS: Flow chart

TIGRIS: Submodels

- Living and working
- Land-use
 - Dwellings and industrial/office sites
- Mobility
 - OD matrices car and PT
- Congestion
 - Car
- Travel impedance
 - Car (incl. parking) and PT
- Accessibility
 - Amenities, population, jobs

TIGRIS: Applications

- Four applications
 - Randstadrail
 - Leiden-Haarlem-Amsterdam
 - Arnhem-Nijmegen
 - Randstad: Urbanisation beyond 2030
- Primarily used as an explorative model
 - Unclear role in planning processes
- Evaluation

TUDelft

- Not state of the art (no choice modelling)
- Not tailored to the questions in practice (e.g. link with economic analyses)

TIGRIS XL: Modelling approach

- Dynamic spatial allocation model
 - Accessibility influences location choice
- Simulates annual changes
 - However, transport data is updated once every 5 years
- Uses aggregate zones, no detailed spatial data
- Determines effects of infrastructure concepts on land use
- Determines effects of spatial planning on transportation
- Used for policy development, not for evaluation
- See also PhD-Thesis B. Zondag (2007), Chapter 5: http://repository.tudelft.nl/view/ir/uuid%3A9378cee6-aeae-4e50-88de-a546681a42b3/

TIGRIS XL: inputs and output

INPUT

- zones
- inhabitants
- car ownership
- employment levels
- services
- captives and non-captives
- population growth factors
- spatial development policies
- coarse infrastructure network

OUTPUT

- households by type
- employment by type
- real-estate development
- real-estate prices
- trips
- travel times
- safety & environment

Functional design of TIGRIS XL

CIE4801 Land-use and transport interaction models 14

Modules TIGRIS XL

- **Demography** Module addressing basic demographic developments: aging, mortality, birth, income, migration
- Land-use and real estate market Simplistic, excludes role of land-owners and project developers. Different policies are possible. Real estate market translates land use in number of new houses
- Housing market Behavioral choice models estimated on housing market survey
- Labour market Regression model, calibration on period 1986-2000
- **Transport module** Integration of land-use modules with LMS (NMS)

Land and real estate market: role of government

TIGRIS XL can model different levels of government influence on the spatial development:

• Regulated development ('directed allocation')

Spatial developments can only take place on planned locations

• Free market development ('free allocation')

Spatial developments following preferences of households and firms. The developments are restricted by availability of land

• Options in between

Flexible plans or Zoning policy

Household move/stay choice

Explanatory variables

- Household size
- Employment
- Household income
- Age head of household
- Zone type classification (urban to rural)
- Vacant houses in region
- Accessibility current location

Household location choice

Explanatory variables

- Number of vacant houses in a zone
- Average price of houses in a zone
- Zone type classification (urban rural, 5 categories)
- Travel time (travel time between old and new location)
- Accessibility location
- Zone characteristics (water, services, green, population density, etc.)

Labour market

Identification of **economic sectors** is important, because these sectors show different location preferences and responses to transport measures.

Sectors in TIGRIS XL are:

- Agriculture
- Industry
- Logistics
- Retail sector
- Other consumer services
- Business services
- Government

ŤUDelft

Labour market

Explanatory variables

- Accessibility employees
- Population in a region
- Accessibility business
- Accessibility freight
- Agglomeration
- Urbanisation
- Relative share of sector in a region

$$\frac{E_{ge}(t)/E_{ge}(t-1)}{E_{NLe}(t)/E_{NLe}(t-1)} = \alpha_0 \cdot \prod_{x} LF_{xg}(t)^{\alpha_{xe}}$$

- *E* = employment
- g = municipality
- e = sector
- *NL* = national
- *LF* = local factor, e.g. accessibility
- α = parameter

Note that taking the logarithm yields a linear equation for the employment at time step *t*

Accessibility variables

Utility based accessibility measures for (so-called logsum measures)

- Accessibility by household type
- Accessibility of firms for commuters
- Accessibility of firms for business

2.3

TIGRIS and TIGRIS XL: Applications

TIGRIS: Randstad

What are the consequences on land use and traffic when there is development

- in the outer region; or
- in the inner region

Randstad: results land-use

Developing in outer region

Developing in inner region

Randstad results transportation

Congestion

TIGRIS XL Trend scenario

Working population (15-64)

For more information: see www.significance.nl/reports/2007-TXL-MNP-06132.pdf (in Dutch) Or see the book Land-use modelling in practice (www.significance.nl/reports/2007-TXL-MNP-06132.pdf (in Dutch) Or see the book Land-use modelling in practice (www.significance.nl/reports/2007-TXL-MNP-06132.pdf (in Dutch)

Results trend scenario: Jobs

Accessibility of jobs for households (by car) (defined as number of jobs that can be reached within 60 minutes)

morning peak

Accessibility of jobs for households (by public transport) (defined as number of jobs that can be reached within 90 minutes)

Accessibility of employees for firms (by car)

morning peak

rest of the day

Accessibility of employees for firms (by public transport)

TIGRIS XL Concentration scenario

Results concentration scenario

Results concentration scenario

Population – concentration vs. trend

Results concentration scenario

Jobs – concentration vs. trend

2.4

Criteria for land-use models and development in land-use models

Criteria for model comparison (1/2)

- Comprehensiveness
 - Choice of subsystems that are included
- Model structure
 - Unified or composite
- Theory
 - Random utility, bid-rent, entropy, equilibrium
- Modelling techniques
 - Discrete periods, integrated (singly constrained), accessibility indicators, assignment, aggregate/disaggregate
- Dynamics
 - Recursive simulation or quasi dynamic, time lags

Criteria for model comparison (2/2)

- Data requirements
 - Substantial
- Calibration and validation
 - Calibration for cross sections, validition over a longer period of time
- Operationality
 - Only a few are suited for a wider market
- Applicability
 - Limited scope compared to actual issues

Evolution of LUT models

Transport model

Land-use model	no PT no modal split	PT, 24h no logit	PT, peak logit	multimodal activity-based
none				→
activity and judgement				
no market-based land allocation				
logit allocation with price signals				
market-based land-use model				
activity-based land-use model				

3.1

Choice modelling: Firm location behaviour

Factors influencing location choice of firms

- Characteristics of the firm
 - Size
 - Growth
 - Age
 - Sector
- Characteristics of the location
 - Vicinity of infrastructure
 - Accessibility of the market and of employees
 - Neighborhood of other firms
 - Specialisation or diversity

Aggregated approach: All firms in a zone

TUDelft

Disaggregated approach: Individual firms

Data available in the Netherlands

• LISA

National information system of employment, contains information on the whole firm population

• LMS

National model system, contains information on accessibilities

• GIS

Geographic information system, contains information on location of railways, freeways, etc.

Vicinity of infrastructure

Accessibility

Logsum is based on destination and mode choice

Neighborhood of other firms

Firm location choice model

Move probability

$$V_{fi}^{\text{stay}} = 0$$

$$V_{fi}^{\text{move}} = \theta_0 + \theta_1 Gr_f + \theta_2 (1/Age_f) + \theta_3 Sec_f + \theta_4 Acc_i + \dots$$
firm characteristics location characteristics
$$Gr = \text{firm growth} \qquad f - \text{firm index} \\ Age = \text{firm age} \\ Sec = \text{firm sector} \\ Acc = \text{location accessibility}$$

$$P_{fi}^{\text{move}} = \frac{\exp(V_{fi}^{\text{move}})}{\exp(V_{fi}^{\text{move}}) + \exp(V_{fi}^{\text{stay}})} = \frac{1}{1 + \exp(-V_{fi}^{\text{move}})}$$

Location probability

$$V_{sij}^{\text{location}} = \theta_{s1} Dist_{ij} + \theta_{s2} Acc_j + \dots$$

Dist = relocation distance *Acc* = location accessibility

$$P_{sij}^{\text{location}} = \frac{\exp(V_{sij}^{\text{location}})}{\sum_{k} \exp(V_{sik}^{\text{location}})}$$

s - firm sector indexi - current location indexj - new location index

Location probability

Parameter estimates (sector Business)

Location probability

Parameter estimates (sector Finance)

Location choice companies

 For the choice to consider another location characteristics of companies themselves are dominant

• For the location choice accessibility attributes play a role.

- Main accessibility attributes:
 - Distance to original location
 - Distance to freeway on-/off-ramp
 - Distance to railway station
 - financing, education, catering
 - Accessibility by car
 - business, financing, manufacturing, logistics, trading and retail

3.2

Choice modelling: Household location behaviour

Household location choice model

Location probability: MNL approach

$$V_{hij}^{\text{location}} = \theta_{h1} Dist_{ij} + \theta_{h2} Acc_j + \theta_{h3} Eth_j + \dots$$

Dist = relocation distance *Acc* = location accessibility *Eth* = similarity ethnical background

h – household type index

- *i* current location index
- j new location index

$$P_{hij}^{\text{location}} = \frac{\exp(V_{hij}^{\text{location}})}{\sum_{k} \exp(V_{hik}^{\text{location}})}$$

Other factors

Ť

Location choice households

Characteristics of house and neighbourhood are dominant

- Accessibility plays a limited role; key variables are:
 - Distance to previous house
 - Distance to work by car
- Nested models provide more insight
 - E.g. distance to station (households without car)

NB. Check sign of the parameters!

4.

Circle of Wegener revisited

Choice processes

Empirical evidence?

- Databases of observed behaviour
- Observed or generated choice alternatives
- Formulating choice models (logit models)
- Estimating perception factors or weights
- Resulting models of attributes having significant weights

Location choice investors

• Different decision makers thus different objectives

- Project developers
- Authorities
- I've got no empirical evidence for this type of choice, however...
- Given the bi-level nature of the decision problem they should consider the choice behaviour of (future) users of the location

Location choice companies

 For the choice to consider another location characteristics of companies themselves are dominant

• For the location choice accessibility attributes play a role.

- Main accessibility attributes:
 - Distance to original location
 - Distance to freeway on-/off-ramp
 - Distance to railway station
 - financing, education, catering
 - Accessibility by car
 - business, financing, manufacturing, logistics, trading and retail

Location choice households

• For decision to move accessibility plays a role

- Characteristics of house and neighbourhood are dominant
- Accessibility plays a limited role:
 - Distance to previous house
 - Distance to work by car
- More advanced modelling provides more insight
 - E.g. distance to station (for household without a car)

Overall conclusions location choice

- Shift towards disaggregated approaches (individual firms and households)
 - Proposition: disaggregate approach show a larger role of nontransport factors
- Relocation distance is preferably small
- Accessibility plays a role in the location choice behavior
 - Accessibility is relevant for the location choice of firms, not in the decision to move
 - Best accessible locations may not be preferred by households

Trip choice

- To travel or not to travel.....
- No real impact of accessibility
 - Recall constant number of trips per day
- Although: for some trip purposes an effect has been found, still having a minimal impact

Destination choice

 Distance/time has a substantial impact: the larger the distance (or the longer the time), the lower the probability of choosing the destination (assuming similar attractiveness of the destinations)

- Car accessibility is usually dominant, except for households without a car
- Alternative modes improve accessibility, however, net impact on total attractiveness is limited

Mode choice

Clear role of mode availability

- Recall impact of `captiveness'
- Clear role for quality (travel times) of each mode
- However, preferences for specific modes play a major role too!
 - Recall impact of `captiveness'

Route choice

- Clear role of travel time
- In public transport different weights for trip time elements
 - $2.2*T_a+1.5*T_w+T_i+2.3*T_{wt}+5.9*N_t+1.1*T_e$
- Train trips are in fact multi-modal (80% of train travellers uses another mode to travel to or from the station)
- Consequence of multimodality......

Main components utility function multi-modal route choice

ŤUDelft

Conclusion

- There is empirical evidence for the mechanism in Wegener's circle
- However, in nearly every choice situation many other factors play a role, and often quite dominantly
- Often simple and more specific accessibility indicators are significant in location choice:
 - distance to former location, distance to freeway
- Mechanism is stronger for car accessibility, however:
 - Increasing car usage leads to congestion, thus making other locations more attractive

