Asset Management Sewer Conditions – Sewer Inspection

Nikola Stanić, TU Delft 01-10-2013

Sewer Systems It's characteristics

Main function:

- preventing urban flooding,
- mitigating possible health hazards,
- improving overall aesthetics of urban area.

Sewerage systems are capital intensive infrastructure systems characterised by process and structure complexity.

Sewer systems Deficiencies

- Soil contamination
- Exposure to health hazards

 Breakdown of mechanical elements

Sewer systems

Top failure events and their main causes

Top event	Cause	
Flooding	load & and/or canacity	
Frequent CSOs	ioau / aliu/or capacity ¥	
Soil contamination	load ↗ and/or strength ↘	
Exposure to health hazards	load ↗ and/or protection ↘	
Collapse of structural elements	load ↗ and/or strength ↘	
Breakdown of mechanical elements		

Dutch Water Related Expenses

Sewer Asset Management Definition (one of many)

Sewer asset management aims at maintaining a certain minimum level of service at the lowest cost for rehabilitation and maintenance while meeting environmental/sanitary requirements.

Sewer system management process Schematisation

Why start an investigation?

Sewer inspection techniques

Sewer inspection Visual inspection - CCTV

1. Cleaning

Sewer inspection Visual inspection - CCTV

2. Installation of camera

Sewer inspection Visual inspection - CCTV

3. Assessment

Assessment of the footage Visual inspection - CCTV

Nederlandse norm

NEN-EN 13508-2 (en)

Toestand van de buitenriolering -Coderingssysteem bij visuele inspectie

Conditions of drain and sewer systems outside buildings -Part 2: Visual inspection coding system

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

List of defects

CCTV

8.2 Codes relating to the fabric of the pipeline

Table 4 — Details of codes relating to the fabric of the pipeline

Main Code	Additional information	Description			
Defor	Deformation				
ВАА		The cross sectional shape of the pipeline has been deformed from its original shape.			
		The employing authority may specify whether this code is to be used either for flexible pipes only, or for pipes of all materials.			
	Characterisation	The orientation of the deformation:			
		 vertical (A) – the height of the pipe has been reduced 			
		— horizontal (B) - the width of the pipe has been reduced.			
	Quantification	The percentage change in the dimension which reduces.			
	Circumferential location	If the deformation is localised then the circumferential location should be recorded.			
Fissu	re				
BAB					
	Characterisation 1	The nature of the fissure :			
		 surface crack (A) – a crack only in the surface; 			
		 crack (B) – crack lines visible on the pipe wall, pieces still in place; 			
		 fracture (C) – crack visibly open in a pipe wall, pieces still in place. 			
Characterisation 2 The orientation of the fissure:		The orientation of the fissure:			
		 longitudinal (A) – A crack or fracture which is mainly parallel to the axis of the pipe; 			
		 — circumferential (B) – A crack or fracture which is mainly around the circumference of the pipe; 			

List of defects + description

CCTV

8.2 Codes relating to the fabric of the pipeline

Table 4 — Details of codes relating to the fabric of the pipeline

Main Code	Additional information	Description	
Deform	ation		Ι
BAA		The cross sectional shape of the pipeline has been deformed from its original shape.	
		The employing authority may specify whether this code is to be used either for flexible pipes only, or for pipes of all materials.	
	Characterisation	The orientation of the deformation:	
		 vertical (A) – the height of the pipe has been reduced 	
		— horizontal (B) - the width of the pipe has been reduced.	
	Quantification	The percentage change in the dimension which reduces.	
	Circumferential location	If the deformation is localised then the circumferential location should be recorded.	1
Fissure	9		Γ
BAB			1
	Characterisation 1	The nature of the fissure :	1
		 surface crack (A) – a crack only in the surface; 	l
		 crack (B) – crack lines visible on the pipe wall, pieces still in place; 	
		 fracture (C) – crack visibly open in a pipe wall, pieces still in place. 	
	Characterisation 2	The orientation of the fissure:	
		 longitudinal (A) – A crack or fracture which is mainly parallel to the axis of the pipe; 	
		 circumferential (B) – A crack or fracture which is mainly around the circumference of the pipe; 	

BAA	Deformation			
BAB	Fissure			
BAC	Break/Collapse			
BAD	Defective brickwork	or masonry		
BAE	Missing mortar			
BAF	Surface dama	ige	8	
BAG	Intruding connectior	1		Van Naar
BAH	Defective connectior	l		Foto
BAI	Intruding sealing ma	aterial		
BAJ	Displaced joint			
BAK	Lining defect			T
BAL	Defective repair			
BAM	Weld failure			03-1 Van
BAN	Porous pipe	Infiltratio	n	Naa Kui
BBA	Roots		A	Fot
BBB	Attached deposits	A A	12	
BBC	Settled deposits		A 18	
BBD	Ingress of soil	1 / /	The states	
BBE	Other obstacles		S Market M	
BBF	Infiltration		0001.21	00:

TEST

All stand up!

- 4 photos
- 2 possibilities

Choose the right by: A: hand up B: hand down

Error = sit Good = remain standing

BAA	Deformation
BAB	Fissure
BAC	Break/Collapse
BAD	Defective brickwork or masonry
BAE	Missing mortar
BAF	Surface damage
BAG	Intruding connection
BAH	Defective connection
BAI	Intruding sealing material
BAJ	Displaced joint
BAK	Lining defect
BAL	Defective repair
BAM	Weld failure
BAN	Porous pipe
BBA	Roots
BBB	Attached deposits
BBC	Settled deposits
BBD	Ingress of soil
BBE	Other obstacles
BBF	Infiltration

cracks

cracks

-

surface of damage

attached deposits

surface of damage

obstacle

infiltration

ingress of soil

infiltration

ingress of soil

How many are still standing?

Gambling: good chance is 0.5 4 photos $\rightarrow 1/16$ ~ 35 students $\rightarrow \sim 2$?

From inspection to decision making

In every step of the process errors can occur.

Examination results

Main conclusions

Feature recognition

- Probability of a false negative significantly larger than the probability of false positive (people cannot process all visual information).
- P(Fn) =~ 25%
- P(Fp) =~ 5%
- Same results for experienced and un-experienced inspectors.

Feature description

• Probability of an incorrect feature description is larger than probability of a correct description.

Interpretation

• Systematic deviation between experts.

Changes in the SOBEK model CCTV inspection results

Code	Description	Class	SOBEK calculation changes
BAF	surface damage	3	k = 1.7 mm
		4	k = 3 mm
		4	k = 4.5 mm
		5	k = 6 mm
BBB	attached deposits	3	pipe diameter decrease 15%
		3	pipe diameter decrease 20%
		4	pipe diameter decrease 35%
		4	pipe diameter decrease 45%
-	measured slope	-	slope is 0.0
	(settlement)		slope decreased 35%
			slope decreased 55%
			slope decreased 70%

1. Drilling

2. Sample taking

3. Sample storing

4. Sample analysis

Determining of sewer conditions Municipality of the Hague

The most common defects in the municipality of the Hague are: surface damage (BAF) and crack (BAB).

CCTV classification for BAF/BAB with associated action

Classification	1	2	3	4	5
BAF	no	no	no	drill core	replacement
BAB	no	no	no	replacement	replacement

Drill core classification according to "The Hague"

	class 1	class 2	class 3	class 4	class 5
Splitting tensile strength (N/mm ²)	>6	5-6	2.6-4.9	2.5-2	<2
Water absorption (%)	<8	8-9	9-11	11-13.5	>13.5
Specific weight (kg/m ³)	>2275	2230-2275	2190-2229	2150-2189	<2150

Experimental results – comparison Final conditions assessment

Main conclusions

- The quality of final core classification depends on selection of parameters and their classification.
- Different factors like non-uniform deterioration, height/diameter ratio, experimental uncertainty and damage during drilling influence the proper estimation of the splitting tensile strength which makes results unreliable.
- There is no obvious correlation between results of visual inspection and results of drill core analysis.

Sewer inspection Laser profiling

Experimental results Pipe cross-section with indication of min wall thickness

Experimental results

Loss of wall thickness along the length of the pipe

Main conclusions

• Laser scanning offers a new and challenging perspective for measuring sewer pipe structural characteristics, such as interior shape and related to this the remaining wall thickness.

Sewer inspection Person-entry

Sewer inspection Ground Penetrating Radar (GPR)

Sewer inspection Infra-Red thermography

Sewer inspection Smoke test

Sewer inspections...

- Ultrasound;
- Microdeflections;
- Advanced systems (e.g. KARO, PIRAT, SSET)...

Main conclusions

Each inspection technique has its own limitations:

- •Use/Where to use;
- •What will be found;
- •Advantages;
- •Disadvantages.

	Sources of information	Examples	
	Final design reports	hydraulic design report, structural design report	
	As-built reports	construction report	
Reports	System performance reports	operation report, maintenance report	
	All underground infrastructure reports	master plan	
	Surveys	complains report	
	Soil characteristics measurements	soil texture/structure, aeration, aggressively	
Measurements	Asset condition investigations	CCTV inspection, person-entry, laser scanning, GPR, core sampling, KARO, PIRAT, SSET	
	Hydraulic measurements	water level, velocity	
	Hydrological measurements	groundwater table, rainfall measurements	
•	Water quality measurements	temperature, turbidity, conductivity	
	External load measurements	traffic load	

Sewer system management process Uncertainties

How to achieve more effective sewer asset management?

• Need for better understanding of system failure mechanisms.

• Defining what information of what quality is needed at what time for effective asset management.

Determining how this information can be obtained.

• Developing methods for estimating the probability of failure and the criticality of the asset.

