Dredging Processes

Dr.ir. Sape A. Miedema

5. Clay Cutting

Dredging A Way Of Life

Offshore A Way Of Life

Offshore & Dredging Engineering

Dr.ir. Sape A. Miedema Educational Director

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

elft

Delft University of Technology Offshore & Dredging Engineering

Mechanisms

Definitions

Delft University of Technology Offshore & Dredging Engineering

The Flow Type

Forces on the Layer Cut

Forces on the Blade

Resulting Equations

$$K_2 = \frac{C - A \cdot \cos(\alpha + \beta)}{\sin(\alpha + \beta)}$$

$$F_h = K_2 \cdot \sin(\alpha) + A \cdot \cos(\alpha)$$

$$F_{\nu} = K_2 \cdot \cos(\alpha) - A \cdot \sin(\alpha)$$

Faculty of 3mE - Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

elft

Strain Rate Effect

Problem Definition

How to model the strengthening of clay as a function of the strain rate

$$\tau = \tau_{y} + \tau_{0} \cdot \ln \begin{bmatrix} \cdot \\ 1 + \frac{\varepsilon}{\cdot} \\ \cdot \\ \varepsilon_{0} \end{bmatrix}$$

Energy Barriers Mitchell 1976

The Bolzman Distribution

$$\mathbf{p}(\mathbf{E}) = \frac{1}{\mathbf{R} \cdot \mathbf{T}} \cdot \exp\left[\frac{-\mathbf{E}}{\mathbf{R} \cdot \mathbf{T}}\right]$$

$$\mathbf{p}_{\mathrm{E}>\mathrm{E}_{\mathrm{a}}} = \exp\left[\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}\cdot\mathrm{T}}\right]$$

elft

Delft University of Technology Offshore & Dredging Engineering

Strain Rate

$$\overset{\cdot}{\epsilon} = 2 \cdot \mathbf{X} \cdot \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{h}} \cdot exp \left[\frac{-\mathbf{E}_{a}}{\mathbf{R} \cdot \mathbf{T}} \right] \cdot sinh \left[\frac{\tau \cdot \lambda \cdot \mathbf{N}}{2 \cdot \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{T}} \right]$$

Theory Proposed

Case 1

elft

Delft University of Technology Offshore & Dredging Engineering

$$\dot{\varepsilon} = \mathbf{X} \cdot \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{h} \cdot \mathbf{i}} \cdot \left\{ \exp\left[-\left(\frac{\mathbf{E}_{\mathbf{a}}}{\mathbf{R} \cdot \mathbf{T}} - \frac{\mathbf{\tau} \cdot \boldsymbol{\lambda} \cdot \mathbf{N}}{2 \cdot \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{T}}\right) \right] - \exp\left[\frac{-\mathbf{E}_{\ell}}{\mathbf{R} \cdot \mathbf{T}}\right] \right\}$$

elft

Delft University of Technology Offshore & Dredging Engineering

Case 3

$$\dot{\varepsilon} = \mathbf{X} \cdot \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{h} \cdot \mathbf{i}} \cdot \left\{ \exp\left[-\left(\frac{\mathbf{E}_{\mathbf{a}}}{\mathbf{R} \cdot \mathbf{T}} - \frac{\mathbf{\tau} \cdot \boldsymbol{\lambda} \cdot \mathbf{N}}{2 \cdot \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{T}}\right) \right] - \exp\left[\frac{-\mathbf{E}_{\ell}}{\mathbf{R} \cdot \mathbf{T}}\right] \right\}$$

Case 4

$$\tau = (\mathbf{E}_{\mathbf{a}} - \mathbf{E}_{\ell}) \cdot \frac{2 \cdot \mathbf{S}}{\lambda \cdot \mathbf{N}} + \mathbf{R} \cdot \mathbf{T} \cdot \frac{2 \cdot \mathbf{S}}{\lambda \cdot \mathbf{N}} \cdot \ell \mathbf{n} \begin{bmatrix} \mathbf{i} \\ \mathbf{1} + \frac{\mathbf{\hat{\epsilon}}}{\mathbf{\hat{\epsilon}_0}} \end{bmatrix}$$

$$\dot{\boldsymbol{\varepsilon}_0} = \left[\frac{\mathbf{X} \cdot \mathbf{k} \cdot \mathbf{T}}{\mathbf{h} \cdot \mathbf{i}} \cdot \exp\left[\frac{-\mathbf{E}_{\ell}}{\mathbf{R} \cdot \mathbf{T}}\right]\right]$$

Mitchell 1976

 $S = a + b.\sigma_e$

$$\tau = \mathbf{a} \cdot \left\{ (\mathbf{E}_{\mathbf{a}} - \mathbf{E}_{\ell}) \cdot \frac{2}{\lambda \cdot \mathbf{N}} + \mathbf{R} \cdot \mathbf{T} \cdot \frac{2}{\lambda \cdot \mathbf{N}} \cdot \ell \mathbf{n} \left[\mathbf{1} + \frac{\dot{\varepsilon}}{\varepsilon_{0}} \right] \right\}$$
$$+ \mathbf{b} \cdot \left\{ (\mathbf{E}_{\mathbf{a}} - \mathbf{E}_{\ell}) \cdot \frac{2}{\lambda \cdot \mathbf{N}} + \mathbf{R} \cdot \mathbf{T} \cdot \frac{2}{\lambda \cdot \mathbf{N}} \cdot \ell \mathbf{n} \left[\mathbf{1} + \frac{\dot{\varepsilon}}{\varepsilon_{0}} \right] \right\} \cdot \sigma_{\mathbf{e}}$$
$$\tau = \tau_{\mathbf{c}} + \sigma_{\mathbf{e}} \cdot \mathbf{tan}(\phi)$$
$$\tau = \mathbf{a} \cdot \left\{ \mathbf{E}_{\mathbf{a}} \cdot \frac{2}{\lambda \cdot \mathbf{N}} + \mathbf{R} \cdot \mathbf{T} \cdot \frac{2}{\lambda \cdot \mathbf{N}} \cdot \ell \mathbf{n} \left[\frac{\dot{\varepsilon}}{\mathbf{B}} \right] \right\} + \mathbf{b} \cdot \left\{ \mathbf{E}_{\mathbf{a}} \cdot \frac{2}{\lambda \cdot \mathbf{N}} + \mathbf{R} \cdot \mathbf{T} \cdot \frac{2}{\lambda \cdot \mathbf{N}} \cdot \ell \mathbf{n} \left[\frac{\dot{\varepsilon}}{\mathbf{B}} \right] \right\} \cdot \sigma_{\mathbf{e}}$$

Simplifications

$$\tau = \tau_{y} + \tau_{0} \cdot \ln \begin{bmatrix} \cdot \\ 1 + \frac{\varepsilon}{\cdot} \\ \cdot \\ \varepsilon_{0} \end{bmatrix}$$

$$\frac{(d\epsilon/dt)}{(d\epsilon_0/dt)} << 1$$

$$\tau = \tau_{y} + \tau_{0} \cdot \frac{\varepsilon}{\varepsilon_{0}}$$

$(d\epsilon/dt)/(d\epsilon_0/dt) >> 1$

$$\tau = \tau_{y} + \tau_{0} \cdot \ln \left[\frac{\cdot}{\frac{\varepsilon}{\cdot}} \right]$$

 $\frac{\frac{d\varepsilon}{dt}}{\frac{d\varepsilon}{dt}} > 1$ $\tau - \tau_{y} << \tau_{y}$ $\Gamma = \int_{\tau_{y}}^{\tau_{0}} \tau_{y}$

$$\tau = \tau_{\mathbf{y}} \cdot \left[\frac{\cdot}{\varepsilon} \\ \frac{\cdot}{\varepsilon_0} \right]^{\gamma \cdot \mathbf{y}}$$

Faculty of 3mE - Dredging Engineering

Shear Strength vs Strain Rate

Shear Strength vs Strain Rate

Delft

Delft University of Technology Offshore & Dredging Engineering

Rheological models

Conclusions

The new shear strength equation matches the measurements very well
The new shear strength equation can be simplified to match existing equations
For dredging applications the dynamic shear strength (cohesion) is about two times the static shear strength

Resulting Equations, Clay Cutting

$$\mathbf{K}_{2} = \frac{\mathbf{C} - \mathbf{A} \cdot \cos(\alpha + \beta)}{\sin(\alpha + \beta)}$$

$$\mathbf{F}_{\mathbf{h}} = \mathbf{K}_2 \cdot \sin(\alpha) + \mathbf{A} \cdot \cos(\alpha)$$

$$\mathbf{F}_{v} = \mathbf{K}_{2} \cdot \cos(\alpha) - \mathbf{A} \cdot \sin(\alpha)$$

$$\mathbf{C} = \frac{\mathbf{c} \cdot \mathbf{h}_{i} \cdot \mathbf{w}}{\sin(\beta)}$$

$$\mathbf{A} = \frac{\mathbf{a} \cdot \mathbf{h}_{\mathbf{b}} \cdot \mathbf{w}}{\sin(\alpha)}$$

$$\begin{split} \mathbf{F}_{\mathbf{h}} &= \left\{ \frac{\mathbf{c}_{\mathbf{d}} \cdot \mathbf{h}_{\mathbf{i}}}{\sin\left(\beta\right) \cdot \sin\left(\alpha + \beta\right)} + \frac{\mathbf{a} \cdot \mathbf{h}_{\mathbf{b}} \cdot \sin\left(\beta\right)}{\sin\left(\alpha\right) \cdot \sin\left(\alpha + \beta\right)} \right\} \cdot \mathbf{w} \\ \mathbf{k}_{\mathbf{a}} &= \frac{\mathbf{a} \cdot \mathbf{h}_{\mathbf{b}}}{\mathbf{c}_{\mathbf{d}} \cdot \mathbf{h}_{\mathbf{i}}} \\ \\ \mathbf{F}_{\mathbf{h}} &= \left\{ \frac{1}{\sin\left(\beta\right) \cdot \sin\left(\alpha + \beta\right)} + \frac{\mathbf{k}_{\mathbf{a}} \cdot \sin\left(\beta\right)}{\sin\left(\alpha\right) \cdot \sin\left(\alpha + \beta\right)} \right\} \cdot \mathbf{c}_{\mathbf{d}} \cdot \mathbf{h}_{\mathbf{i}} \cdot \mathbf{w} \end{split}$$

elft

Delft University of Technology Offshore & Dredging Engineering

The Shear Angle β

The Horizontal Cutting Force F_h (c=1 kPa)

lft

Delft University of Technology Offshore & Dredging Engineering

The Vertical Cutting Force F_v (c=1 kPa)

The Vertical Cutting Force F_v vs The Blade Angle lpha

>

$$\mathbf{c}_{\mathbf{d}} = \mathbf{c}_{\mathbf{y}} + \mathbf{c}_{\mathbf{0}} \cdot \ln \left(\begin{array}{c} \cdot \\ \mathbf{\epsilon} \\ \mathbf{1} + \frac{\varepsilon}{\cdot} \\ \mathbf{\epsilon}_{\mathbf{0}} \end{array} \right) \approx 2 \cdot \mathbf{c}_{\mathbf{y}}$$

1

$$c_y \approx 6 \cdot SPT \implies c_d \approx 12 \cdot SPT$$

$$\mathbf{E}_{sp} = \frac{\mathbf{F}_{h} \cdot \mathbf{v}_{c}}{\mathbf{h}_{i} \cdot \mathbf{w} \cdot \mathbf{v}_{c}} \qquad \mathbf{Q} = \frac{\mathbf{P}}{\mathbf{E}_{sp}}$$

$$\mathbf{E}_{sp} = \left\{ \frac{1}{\sin(\beta) \cdot \sin(\alpha + \beta)} + \frac{\mathbf{k}_{a} \cdot \sin(\beta)}{\sin(\alpha) \cdot \sin(\alpha + \beta)} \right\} \cdot 12 \cdot SPT$$

$$\dot{\boldsymbol{\epsilon}}_{a} = 1.4 \cdot \frac{\boldsymbol{v}_{c}}{\boldsymbol{h}_{i}} \cdot \frac{sin(\beta)}{sin(\alpha + \beta)}$$

$$\tau_0 \ / \ \tau_y = 0.1428, \ \dot{\epsilon}_0 = 0.03$$

Specific Energy in Clay, 30 Degree Blade

elft

Delft University of Technology Offshore & Dredging Engineering

Production in Clay, 30 Degree Blade

ft

Delft University of Technology Offshore & Dredging Engineering

Specific Energy in Clay, 45 Degree Blade

Production in Clay, 45 Degree Blade

Specific Energy in Clay, 60 Degree Blade

elft

Delft University of Technology Offshore & Dredging Engineering

ProDuction in Clay, 60 Degree Blade

⊳lft

Delft University of Technology Offshore & Dredging Engineering

The Tear Type

The Reduced Mohr Circle

The specific energy Esp as a function of the compressive strength of clay, for different layer thicknesses at vc=1 m/s for a 60 degree blade.

UDelft

Delft University of Technology Offshore & Dredging Engineering

lft

Delft University of Technology Offshore & Dredging Engineering

The Curling Type

Offshore & Dredging Engineering

Equilibrium of Moments

$$\left(\frac{\mathbf{A} - \mathbf{C} \cdot \cos(\alpha + \beta)}{\sin(\alpha + \beta)}\right) \cdot \frac{\lambda_1 \cdot \mathbf{h}_i}{\sin(\beta)} = \left(\frac{\mathbf{C} - \mathbf{A} \cdot \cos(\alpha + \beta)}{\sin(\alpha + \beta)}\right) \cdot \frac{\lambda_2 \cdot \mathbf{h}_b}{\sin(\alpha)}$$

$$\mathbf{A} \cdot \mathbf{x}^2 + \mathbf{B} \cdot \mathbf{x} + \mathbf{C} = 0$$

$$\mathbf{h}_b^{'} = \mathbf{x} = \frac{-\mathbf{B} - \sqrt{\mathbf{B}^2 - 4 \cdot \mathbf{A} \cdot \mathbf{C}}}{2 \cdot \mathbf{A}}$$

$$\mathbf{A} = \frac{\lambda_2 \cdot \mathbf{a} \cdot \cos(\alpha + \beta)}{\sin(\alpha) \cdot \sin(\alpha)}$$

$$\mathbf{B} = \frac{\lambda_1 \cdot \mathbf{a} - \lambda_2 \cdot \mathbf{c}}{\sin(\alpha) \cdot \sin(\beta)} \cdot \mathbf{h}_i$$

$$\mathbf{C} = -\frac{\lambda_1 \cdot \mathbf{c} \cdot \cos(\alpha + \beta)}{\sin(\beta) \cdot \sin(\beta)} \cdot \mathbf{h}_i \cdot \mathbf{h}_i$$
Delft University of Technology – Offshore & Dredging Engineering

Questions?

Sources images

- 1. A model cutter head, source: Delft University of Technology.
- 2. Off shore platform, source: Castrol (Switzerland) AG
- 3. Off shore platform, source: http://www.wireropetraining.com

