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Introduction 

Topics of Module 1 
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• To understand basic real flow concepts, flow regimes in real flows, 
vortex induced vibrations 
 

• To apply scaling laws to analyse hydromechanic model experiments 
 

• Understand the concepts of lift and drag in real and in potential 
flows 
 

• To perform basic computations on wind and current loads on 
floating structures 
 

• To understand the concept of ship resistance and resistance 
components 
 

• To understand the basic concepts of ship propulsion 

Learning Objectives 

Chapter 4 
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• Real fluids: 

 

• Now we deal with viscosity 

• Flows in water (current, forward speed) and air (wind) 

• Media still continuous and homogeneous 

 

Chapter 4 Constant Real Flow 

Phenomena 

Introduction 
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• Experiments with tank with drain: 

 

 

 

 

 

 

 

 

 

• Clear influence of flow velocity on flow pattern and length 
transition laminar – turbulent flow 

 

 

 

Basic Viscous Flow Concepts 

Reynolds number dye injection 
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Reynolds number 

Basic Viscous Flow Concepts 

• Laminar and turbulent boundary layer: 
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• Reynolds found similar phenomena when following ratio was 
kept constant: 

 

 

• With: 

• V    Flow velocity [m/s] 

• D    Pipe diameter [m] 

•     Kinematic viscosity of fluid [m2/s] 

•    Dynamic viscosity of fluid [kg /(ms)] 

 

• Interpretation: 

 

Reynoldsnumber = Inertia forces / Viscous forces 

𝑅𝑒 =
𝑉 ⋅ 𝐷

ν
 

ν =
η

ρ
 

Basic Viscous Flow Concepts 

Reynolds number 
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• Newton postulated the following for the tangential stress in a 
fluid: 

 

 

• With: 

•   Shear stress  [N/m2] 

•    Dynamic viscosity of fluid [kg /(ms)] 

• dV/dy    Velocity gradient [s-1] 

 

 

• Note: works only well for very low Reynolds numbers (<2000) 

 

Reynolds number ship: 

Newton's Friction Force description 

τ = η ⋅
𝑑𝑉

𝑑𝑦
 

𝑅𝑒 =
20 ⋅ 1852 3600 ⋅ 100

1 ⋅ 10−6
≈ 1 ⋅ 109 

Basic Viscous Flow Concepts 
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• Geometric Similitude:  
 (Similitude=Similarity) 

• Fixed ratio between dimensions on model scale and on full scale 
 

• Kinematic Similitude 

• Fixed ratio between velocities and velocity vectors (and 
components) on model scale and on full scale 
 

• Dynamic Similitude 

• Fixed ratio between forces and force vectors (and components) on 
model scale and on full scale 

 

Physical Model Relationships 

Dimensionless Ratios and Scaling 

Laws 
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• Length 
 

• Velocity 
 

• Acceleration of gravity 

 

• Density 

 

• Viscosity 

 

Dimensionless Ratios and Scaling 

Laws 

Scale factors 

α𝐿 

α𝑉 

α𝑔 

αρ 

αν 

𝐿𝑝 = α𝐿 ⋅ 𝐿𝑚 

𝑉𝑝 = α𝑉 ⋅ 𝑉𝑚 

𝑔𝑝 = α𝑔 ⋅ 𝑔𝑚 

ρ𝑝 = αρ ⋅ ρ𝑚 

ν𝑝 = αν ⋅ ν𝑚 
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• Area 
 

• Volume 
 

• Mass mom. of inertia 

 

• Mass 

 

• Time 

 

• Acceleration 

 

• Force 

 

Dimensionless Ratios and Scaling 

Laws 

Scale factors 
α𝑆 = α𝐿

2 

α𝛻 = α𝐿
3 

α𝐼 = αρ ⋅ α𝐿
5 

α𝑀 = αρ ⋅ α𝛻 = αρ ⋅ α𝐿
3 

α𝑇 =
α𝐿
α𝑉

 

α𝐹 = α𝑀 ⋅ α𝑎 = αρ ⋅ α𝐿
3 ⋅

α𝑉
2

α𝐿
= αρ ⋅ α𝑉

2 ⋅ α𝐿
2 

α𝑎 =
α𝑉
α𝑇

=
α𝑉
2

α𝐿
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Newton's Similitude Law: application 

 

 

 

 

 

 

 

 

 

• Constant C independent of scale! 

α𝐹 = α𝑀 ⋅ α𝑎 = αρ ⋅ α𝐿
3 ⋅

α𝑉
2

α𝐿
= αρ ⋅ α𝑉

2 ⋅ α𝐿
2 

α𝐹 =
𝐹𝑝
𝐹𝑚

=
ρ𝑝 ⋅ 𝑉𝑝

2 ⋅ 𝐿𝑝
2

ρ𝑚 ⋅ 𝑉𝑚
2 ⋅ 𝐿𝑚

2  

𝐹𝑝

ρ𝑝 ⋅ 𝑉𝑝
2 ⋅ 𝐿𝑝

2 =
𝐹𝑚

ρ𝑚 ⋅ 𝑉𝑚
2 ⋅ 𝐿𝑚

2 = 𝐶 

𝐹𝑝 = 𝐶 ⋅
1

2
ρ𝑝𝑉𝑝

2 ⋅ 𝐿𝑝
2  𝐹𝑚 = 𝐶 ⋅

1

2
ρ𝑚𝑉𝑚

2 ⋅ 𝐿𝑚
2  

Dimensionless Ratios and Scaling 

Laws 

12 



• Newton's friction force: 
 
 
 

• Inertia force: 

 

 

 

• Gravity force: 

 

Viscous forces and Inertia forces 

𝐹𝑣 ∝ η
𝑉

𝐿
𝐿2 𝐹 = η ⋅

𝑑𝑉

𝑑𝑦
𝐴 α𝐹𝑣 = αηα𝑉α𝐿 

𝐹𝑖 ∝ ρ𝐿3
𝑉2

𝐿
= ρ𝐿2𝑉2 𝐹 = 𝑚𝑎 α𝐹𝑖 = αρα𝐿

2α𝑉
2  

𝐹𝑔 ∝ ρ𝐿3𝑔 𝐹 = 𝑚𝑔 α𝐹𝑔 = αρα𝐿
3α𝑔 

Dimensionless Ratios and Scaling 

Laws 
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• Reynolds number: dynamic similitude viscous forces and inertia 
forces 
 
 
 

 

 

• Froude number: dynamic similitude gravity forces and inertia 
forces 

 

Reynolds number and Froude number 

αηα𝑉α𝐿 = αρα𝐿
2α𝑉

2  

αη = αρα𝐿α𝑉 

αρα𝐿α𝑉

αη
= 1 𝑅𝑒 =

𝑉 ⋅ 𝐷 ⋅ ρ

η
=
𝑉 ⋅ 𝐷

ν
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

αρα𝐿
3α𝑔 = αρα𝐿

2α𝑉
2  

α𝐿α𝑔 = α𝑉
2  

α𝑉
2

α𝐿α𝑔
= 1 𝐹𝑟 =

𝑉

𝐿𝑔
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Dimensionless Ratios and Scaling 

Laws 
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• For situations where gravity, inertia and viscosity play a role: 

• Model test should be performed at equal Re and Fr with respect to 

full scale! 

• Only then dynamic similitude for model scale and full scale 

 

• Example: ship resistance 

• Moving ship and water: inertia forces 

• Waves: gravity forces 

• Friction: viscous forces 
 
 
 

 

• However is this really possible? 

 

Dimensionless Ratios and Scaling 

Laws 

Reynolds number and Froude number 

𝑅𝑒 =
𝑉 ⋅ 𝐷 ⋅ ρ

η
=
𝑉 ⋅ 𝐷

ν
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐹𝑟 =

𝑉

𝐿𝑔
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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• The drag force of objects in a fluid is often expressed as: 

 

 

 

• Or for 2D cases per unit length (for instance D diameter of a 
cylinder): 

 

 

• Newton’s similitude law, but CD is dependent on scale 

 

• Note: only (viscous) drag force in real or viscous flows: not in 
ideal or potential flows! 

 

Cylinder Flow Regimes 

Drag force 

𝐹𝐷 = 𝐶𝐷 ⋅
1

2
ρ𝑉2 ⋅ 𝐴      [𝑁] 

𝑓𝐷 = 𝐶𝐷 ⋅
1

2
ρ𝑉2 ⋅ 𝐷     [𝑁/𝑚] 
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Dependence on Reynolds number 

Re = 10000, CD = 1.2  

Re = 2000, CD = 1.3  

Re = 26, CD = 2.0  

Re < 1, CD = 1.2  

Re = 9.6, CD = 4.0  

Re = 13, CD = 3.5  

Cylinder Flow Regimes 

17 



• Critical Reynoldsnumber: transition from laminar to turbulent 
flow 

 

• For flow around a cylinder: 

 

• Subcritical (CD = 1.2) 

• Critcal flow (CD = 0.3)  

• Postcritical flow (CD = 0.7) 

 

• Critical ReD  5∙105 
 

• Large dependence of surface 

roughness 

 

 

 

Critical flow 

Cylinder Flow Regimes 
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Drag coefficient cylinder in cross flow 

Cylinder Flow Regimes 
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Pressure distribution cylinder in cross flow 

Cylinder Flow Regimes 
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• For (2D) submerged body has 
two components: 

 

1)  Frictional drag: 

 

• Related to skin friction due 
tangential stresses between fluid and body 
 
 

2)  Form drag:     (aka: pressure drag or profile drag) 

 

• Related to separation region behind body: failure of pressure to 
recover to stagnation pressure 

 

 

 

Drag components 

Cylinder Flow Regimes 
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• When object falls through a fluid (or gas) it experiences drag 

 

• At certain point drag equals weight and object has a constant 
flow velocity, the fall velocity 

• in 2D: 

 

 

 

 

 

 

• C
D
 is dependent on Reynolds number: often iteration necessary 

 

Drag 

Fall velocity 

𝑊𝑠𝑢𝑏𝑚 = 𝐶𝐷𝐷 ⋅
1

2
ρ𝑉𝑓

2 
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• When object falls through a fluid (or gas) it experiences drag 

 

• At certain point drag equals weight and object has a constant 
flow velocity, the fall velocity 

• in 2D: 

 

 

 

 

 

 

• C
D
 is dependent on Reynolds number: often iteration necessary 

 

Drag 

Fall velocity 

𝑊𝑠𝑢𝑏𝑚 = 𝐶𝐷𝐷 ⋅
1

2
ρ𝑉𝑓

2 
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• Vortex shedding → alternating circulation built up around the 

cylinder due to unsteady turbulent flow 

 

• (Or cyclic pressure variation behind cylinder) 

• Leads to alternating (transverse) lift force and (longitudinal) drag 
force 

 

Cylinder Flow Regimes 

Vortex shedding 

Von Karman vortex street 
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• This can be expressed as (very approx.): 

 

Cylinder Flow Regimes 

Vortex shedding 

Von Karman vortex street 

𝐹𝐿 = 𝐶𝐿 ⋅
1

2
ρ𝑉2 ⋅ 𝐷 ⋅ sin 2π𝑓𝑣𝑡 + ε  

Vortex shedding frequency 

25 



• Based on the vortex shedding frequency the Strouhal number is 
defined: 

 

Cylinder Flow Regimes 

Vortex shedding 

Von Karman vortex street 

𝑆𝑡 =
𝑓𝑣 ⋅ 𝐷

𝑈
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Cylinder Flow Regimes 

Vortex shedding 
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Cylinder Flow Regimes 

Vortex shedding 

 

St nearly constant for 
large range of Re 
numbers! 
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Cylinder Flow Regimes 

Vortex shedding 

L D 

+ + 

0 - 

- + 

0 - 

Lift force oscillates with frequency 

fv 

 

Drag force oscillates with 

frequency 2fv 
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• Usually only the total drag of interest: 
• Acts over the whole structure in the same direction 

 

• The lift force is dependent on local vortex generation, that in turn 
is dependent on: 
• Local shape 

• Local velocities 

• Randomness in general 

 

• However! In one case vortex shedding can become important and 
even dangerous: 
• When shedding takes place at the natural frequency of the 

structure 

• Spectacular resonance can be the result 

• As well as increased drag 

 

Cylinder Flow Regimes 

Vortex shedding 
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• Reduced frequency defined as: 

 

 

 

• Resonance when vortex shedding frequency equals natural 
frequency: 

 

 

 

• For large part flow regime St = 0.2, then the reduced frequency 

becomes: 

 

Cylinder Flow Regimes 

Vortex induced vibrations (VIV) 

𝑈𝑟 =
𝑈

𝑓𝑛 ⋅ 𝐷
 

𝑓𝑣 =
𝑆𝑡 ⋅ 𝑈

𝐷
= 𝑓𝑛 

𝑆𝑡 ≈ 0.2 → 𝑈𝑟 =
1

𝑆𝑡
≈ 5 

𝑓𝑛 =
𝑈

𝑈𝑟 ⋅ 𝐷
 

𝑆𝑡 ⋅ 𝑈

𝐷
=

𝑈

𝑈𝑟 ⋅ 𝐷
 

 

𝑆𝑡 =
1

𝑈𝑟
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• Reduced frequency: 

 

 

• Crosswise oscillations 

• Strong when Ur about 5 

• Lock in: the response of the cable/construction element (at its 
natural frequency) reinforces the process 

 

• In-line oscillations 

• Due to slight oscillation of drag force (few percent of total drag) 

• Frequency twice the Strouhal frequency 

• Happen at lower Ur values 

• Seen at half the ambient velocity needed for crosswise oscillations 

 

Cylinder Flow Regimes 

Vortex induced vibrations (VIV) 

𝑈𝑟 =
𝑈

𝑓𝑛 ⋅ 𝐷
 𝑆𝑡 ≈ 0.2 → 𝑈𝑟 =

1

𝑆𝑡
≈ 5 
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Cylinder Flow Regimes 

Vortex induced vibrations (VIV) 

33 
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• World’s First Towing tank (1872, Torquay UK) 

• 85 x 11 x 3 m by W. Froude 

 

Ship Resistance 

Froude's hypotheses 

34 
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• Froude's 1st hypothesis: 

• Resistance consists of 2 independent components: 
• Frictional resistance R

f 

• Residual resistance R
r 

 

 

 

 

 

• Froude's 2nd hypothesis: 

• Frictional resistance can be estimated with the drag of a equivalent 
flat plate: 

• Same Reynolds number (same length and velocity) 

• Same wetted area 

 

Ship Resistance 

Froude's hypotheses 

𝑅𝑡 = 𝑅𝑓 + 𝑅𝑟 
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• Necessary due to difficulties retaining Dynamic Similitude 

 

• Dynamic Similitude requires that Froude number and Reynolds 
number are identical for model and prototype 

 

 

 

 

• Physical meaning Froude number and Reynolds number? 

Ship Resistance 

Froude's hypotheses 

𝐹𝑟 =
𝑉

𝑔𝐿
 𝑅𝑒 =

𝑉𝐿

ν
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• Froude number: ratio inertia forces and gravity forces: 

• Related to wave making: wave making causes resistance 

 

 

 

• Reynolds number: ratio inertia forces and viscous forces 

• Related to friction 

 

 

 

 

• Why not possible to keep both constant? 

Ship Resistance 

Froude's hypotheses 

𝐹𝑟 =
𝑉

𝑔𝐿
 

𝑅𝑒 =
𝑉𝐿

ν
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• Flat plate: produces (almost) no wave, therefore no wave 
resistance, thus: 

 

• Resistance flat plate independent of Froude number 

 

• In formula: 

 

 

• Frictional resistance coefficient flat plate empirically determined 

• Most widely used for ships is the ITTC-57 plate friction line: 

 

Ship Resistance 

Frictional Resistance 

𝑅𝑓 = 𝐶𝑓 ⋅
1

2
ρ𝑉2 ⋅ 𝑆 

𝐶𝑓 =
0.075

log10 𝑅𝑛 − 2
2 
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Ship Resistance 

Frictional Resistance 

39 



• Part of resistance that is not frictional resistance: 

 

 

 

• Components: 

• Wave resistance: energy is lost by the production of waves around 
the ship traveling through the water 
 

• Form resistance: part of resistance that difference between total 
resistance and frictional resistance as Fr → 0 

Ship Resistance 

Residual Resistance 

𝑅𝑡 = 𝑅𝑓 + 𝑅𝑟 𝑅𝑟 = 𝐶𝑟 ⋅
1

2
ρ𝑉2 ⋅ 𝑆 
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Ship Resistance 

Resistance Components 

Plate friction line 

Fr ≈ 0 

 
Frictional resistance 

Wave resistance 

Form resistance 

Total resistance 

𝐶𝑡 

log𝑅𝑛 

 
Residual resistance 

 
Total resistance 
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• Resistance coefficients “Simon Bolivar” model family 
 

• Test performed at different scales and same Froude 
number → different Reynolds number 

 

• Ct dependent on scale! (No dynamic similarity) 

 

• Cr =Ct - Cf independent of scale 

 

• Difference line Fn = 0 and plate friciton line = form 
resistance 
 

 

Ship Resistance 

Form Resistance 
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• Resistance coefficients “Simon Bolivar” model family 
 

• Test performed at different scales and same Froude 
number → different Reynolds number 

 

• Ct dependent on scale! (No dynamic similarity) 

 

• Cr =Ct - Cf independent of scale 

 

• Difference line Fn = 0 and plate friciton line = form 
resistance 
 

 

Ship Resistance 

Form Resistance 
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• Froude assumed form resistance independent of Reynolds 
number: 

 

 

• Hughes instead assumed that form resistance was proportional 
to frictional resistance and came up with a form factor k: 

 

 

• Reasoning: form resistance associated with separation of flow 

• Separation prevents pressure recovery at aft side of body: therefore 
drag 

• Flow separation is due to viscosity! 

• Thus form drag is associated with viscous flow 

 

Ship Resistance 

Resistance Components 

𝐶𝑡 = 𝐶𝑓 + 𝐶𝑟 = 𝐶𝑓 + 𝐶𝑤 + 𝐶𝑓𝑜𝑟𝑚  

𝐶𝑡 = 𝐶𝑣 + 𝐶𝑤 = 𝐶𝑓 1 + 𝑘 + 𝐶𝑤 
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• Froude assumed form resistance independent of Reynolds 
number: 

 

 

• Hughes instead assumed that form resistance was proportional 
to frictional resistance and came up with a form factor k: 

 

 

• Reasoning: form resistance associated with separation of flow 

• Separation prevents pressure recovery at aft side of body: therefore 
drag 

• Flow separation is due to viscosity! 

• Thus form drag is associated with viscous flow 

 

Ship Resistance 

Resistance Components 

𝐶𝑡 = 𝐶𝑓 + 𝐶𝑟 = 𝐶𝑓 + 𝐶𝑤 + 𝐶𝑓𝑜𝑟𝑚  

𝐶𝑡 = 𝐶𝑣 + 𝐶𝑤 = 𝐶𝑓 1 + 𝑘 + 𝐶𝑤 
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• Froude assumed form resistance independent of Reynolds 
number: 

 

 

• Hughes instead assumed that form resistance was proportional 
to frictional resistance and came up with a form factor k: 

 

 

• Reasoning: form resistance associated with separation of flow 

• Separation prevents pressure recovery at aft side of body: therefore 
drag 

• Flow separation is due to viscosity! 

• Thus form drag is associated with viscous flow 

 

Ship Resistance 

Resistance Components 

𝐶𝑡 = 𝐶𝑓 + 𝐶𝑟 = 𝐶𝑓 + 𝐶𝑤 + 𝐶𝑓𝑜𝑟𝑚  

𝐶𝑡 = 𝐶𝑣 + 𝐶𝑤 = 𝐶𝑓 1 + 𝑘 + 𝐶𝑤 

CB 1+k 

<0.7 1.10-1.15 

0.7-0.8 1.15-1.20 

>0.8 1.20-1.30 
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Ship Resistance 

Resistance Extrapolation 

• Froude 

 

𝑅 = 𝐶 ⋅
1

2
ρ𝑉2 ⋅ 𝑆 

𝑅𝑛 =
𝑉𝐿

ν
 𝐹𝑛 =

𝑉

𝑔𝐿
 

𝐶𝑡𝑚𝑜𝑑𝑒𝑙 = 𝐶𝑓𝑚𝑜𝑑𝑒𝑙
+ 𝐶𝑟𝑚𝑜𝑑𝑒𝑙 

1 measure 

3 calculate: 𝐶𝑟 = 𝐶𝑡 − 𝐶𝑓 

𝐶𝑡𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 𝐶𝑓𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
+ 𝐶𝑟𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 

2 calculate: 

4 extrapolate: 𝐶𝑟𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 𝐶𝑟𝑚𝑜𝑑𝑒𝑙 

𝐶𝑓 =
0.075

log10 𝑅𝑛𝑚𝑜𝑑𝑒𝑙 − 2 2 

5 calculate: 

6 calculate: 𝐶𝑡 = 𝐶𝑓 + 𝐶𝑟 

𝐹𝑛𝑚𝑜𝑑𝑒𝑙 = 𝐹𝑛𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 

𝑉𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = α𝐿𝑉𝑚𝑜𝑑𝑒𝑙 

𝑅𝑛𝑚𝑜𝑑𝑒𝑙 ≠ 𝑅𝑛𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 

𝐶𝑓 =
0.075

log10 𝑅𝑛𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 − 2
2 
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Ship Resistance 

Resistance Extrapolation 

• Hughes 

𝑅 = 𝐶 ⋅
1

2
ρ𝑉2 ⋅ 𝑆 

𝑅𝑛 =
𝑉𝐿

ν
 𝐹𝑛 =

𝑉

𝑔𝐿
 

𝐶𝑡𝑚𝑜𝑑𝑒𝑙 = 1 + 𝑘 𝐶𝑓𝑚𝑜𝑑𝑒𝑙
+ 𝐶𝑤𝑚𝑜𝑑𝑒𝑙 

1 measure 

3 calculate: 𝐶𝑤 = 𝐶𝑡 − 𝐶𝑓 1 + 𝑘  

𝐶𝑡𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 1 + 𝑘 𝐶𝑓𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
+ 𝐶𝑤𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 

2 calculate: 

4 extrapolate: 𝐶𝑤𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = 𝐶𝑤𝑚𝑜𝑑𝑒𝑙 

𝐶𝑓 =
0.075

log10 𝑅𝑛𝑚𝑜𝑑𝑒𝑙 − 2 2 

5 calculate: 

6 calculate: 𝐶𝑡 = 𝐶𝑓 1 + 𝑘 + 𝐶𝑤 

𝐹𝑛𝑚𝑜𝑑𝑒𝑙 = 𝐹𝑛𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 

𝑉𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 = α𝐿𝑉𝑚𝑜𝑑𝑒𝑙 

𝑅𝑛𝑚𝑜𝑑𝑒𝑙 ≠ 𝑅𝑛𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 

𝐶𝑓 =
0.075

log10 𝑅𝑛𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 − 2
2 
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• Forces and moments calculated using drag coefficients: 
 
 
 
 
 
 
 
 

•                  Longitudinal, lateral and horizontal wind/current moment 
•                  Drag coefficients dependent on relative wind angle 
•                  Density (of air for wind, of water for current) 
•                  Frontal and lateral projected area (above water for wind,                 

  below for current) 
•                  Length of ship 
•                  Relative wind speed and angle 

Wind and Current loads 

Forces and moments 

𝑋 = 𝐶𝑋 α𝑟 ⋅
1

2
ρ𝑉𝑟

2 ⋅ 𝐴𝑇 

𝑌 = 𝐶𝑌 α𝑟 ⋅
1

2
ρ𝑉𝑟

2 ⋅ 𝐴𝐿 

𝑁 = 𝐶𝑁 α𝑟 ⋅
1

2
ρ𝑉𝑟

2 ⋅ 𝐴𝐿 ⋅ 𝐿 

𝑋, 𝑌, 𝑁 
𝐶𝑋, 𝐶𝑌, 𝐶𝑁 
ρ 

𝐴𝑇 , 𝐴𝐿 

𝐿 
𝑉𝑟 , α𝑟 
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Wind and Current loads 

Apparent (or Relative) Wind and True Wind 

• Vector combination of vessel speed with with speed 

α𝑟𝑤 = arctan
𝑉𝑡𝑤sinα𝑡𝑤

𝑉𝑠 + 𝑉𝑡𝑤cosα𝑡𝑤
 

𝑉𝑟𝑤 = 𝑉𝑡𝑤sinα𝑡𝑤
2
+ 𝑉𝑠 + 𝑉𝑡𝑤cosα𝑡𝑤

2
 

𝑉𝑟𝑤 = 𝑉𝑠
2 + 𝑉𝑡𝑤

2 + 2𝑉𝑠𝑉𝑡𝑤cos α𝑡𝑤  

Error in book 
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Wind and Current loads 

Values for Drag Coefficients 

• Difficult to calculate: viscous effects significant, as well as flow 
separation 

 

• Wind loads: done with wind tunnel model testing 

• Current loads: done with towing tank testing or testing in basin 
with current simulation 
 
 

• Based on previous performed model testing: 

 

• Empirical estimation methods available (for instance Remery and 
Van Oortmerssen, 1973) 

51 



Wind and Current loads 

Values for Drag Coefficients 

 

 

 

• Typical values: 

𝑉𝑤 𝑧 = 𝑉𝑤𝑟𝑒𝑓ℎ𝑒𝑖𝑔ℎ𝑡 ⋅
𝑧

𝑧𝑟𝑒𝑓ℎ𝑒𝑖𝑔ℎ𝑡

α𝑠ℎ𝑒𝑎𝑟

 

𝑧𝑟𝑒𝑓ℎ𝑒𝑖𝑔ℎ𝑡 = 10𝑚 

α𝑠𝑒𝑎 = 0.11 

α𝑙𝑎𝑛𝑑 = 0.16 
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Wind and Current loads 

Lateral area and force balance 

Reaction force on 
submerged part 

Wind force 
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Sources images 

[1] (Vortex Induced Vibration) VIV Suppressors Strakes, source: 
http://www.marktool.com/splashtron/SPLASHTRON-VIV-Supression-Strakes  
[2] Vortex Induced Vibration (VIV), source: CeSOS  
[3] View of the first naval test tank constructed by the civil engineer and naval architect, William 
Froude, source: Imperial War Museum London 
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