Offshore Hydromechanics Part 2

Ir. Peter Naaijen

5. Potential Flow Diffraction problems

Teacher module II: • Ir. Peter Naaijen • p.naaijen@tudelft.nl • Room 34 B-0-360 (next to towing tank)	
Book: • Offshore Hydromechanics, by J.M.J. Journee & W.W.Massie Useful weblinks: • http://www.shipmotions.nl • Blackboard	
OE4630 2012-2013, Offshore Hydromechanics, Part 2 Marine Engineering, Ship Hydromechanics Section	2

		fromechanics <u>Pt</u> 2, 2012-201: inute) changes in location at		
Date:	Time:	Type:	Teacher:	Location
Wed 14 Nov	13.30-16.30	Lecture	Peter Naaijen	3mE-CZD (James Watt)
Wed 14 Nov	16.30-17.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ D (James Watt)
Fri 16 Nov	10.30-12.30	Lecture	Peter Naaijen	3mE-CZ8 (Isaac Newton)
Mon 19 Nov	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Tue 20 Nov	13.30-15.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ C (Daniel Bernoulli)
Wed 28 Nov	13.30-15.30	Lecture	Peter Naaijen	3mE-CZD (James Watt)
Wed 28 Nov	15.30-17.30	Assignment assistance /Questions	Peter Naaijen	3mE-CZ D (James Watt)
Fri 30 Nov	10.30-13.00	Lab session	Peter Naaijen	Towing Tank
Mon 3 Dec	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Tue 4 Dec	13.30-16.00	Lab session	Gideon Hertzberger	Towing Tank
Tue 4 Dec	16.30-17.30	Assignment assistance /Questions	Peter Naaijen	Room Peter Naaijen (34 B 0 360)
Mon 10 Dec	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)
Mon 17 Dec	15.30-17.30	Lecture	Peter Naaijen	3mE-CZB (Isaac Newton)
Mon 7 Jan	15.30-17.30	Lecture	Peter Naaijen	3mE-CZ B (Isaac Newton)

Definition of ship motions Motion Response in regular waves: How to use RAO's Ubdenstand the terms in the equation of motion: hydromechanic reaction How to solve RAO's from the equation of motion Motion Response in irregular waves: How to determine response in inregular waves from RAO's and wave spect 3D linear Potential Theory How to determine hydrodynamic reaction coefficients and wave forces for How to determine Valcotly Potential Motion Response in irregular waves:	trum without forward speed
How to use RAO's Hodestand the terms in the equation of motion: hydromechanic reaction How to solve RAO's from the equation of motion Motion Response in irregular waves: How to determine response in irregular waves from RAO's and wave spect 3D linear Potential Theory How to determine hydrodynamic reaction coefficients and wave forces from How to determine Velocity Potential	trum without forward speed
Understand the terms in the equation of motion: hydromechanic reaction How to solve RAO's from the equation of motion Motion Response in irregular waves: How to determine response in irregular waves from RAO's and wave spect 3D linear Potential Theory How to determine hydrodynamic reaction coefficients and wave forces for How to determine Vedocity Potential	trum without forward speed
How to solve RAO's from the equation of motion Motion Response in irregular waves: How to determine response in irregular waves from RAO's and wave spect 3D linear Potential Theory How to determine hydrodynamic reaction coefficients and wave forces from How to determine Velocity Potential	trum without forward speed
Motion Response in irregular waves: How to determine response in irregular waves from RAO's and wave spect 3D linear Potential Theory How to determine hydrodynamic reaction coefficients and wave forces fror How to determine Velocity Potential	
-How to determine response in irregular waves from RAO's and wave spect 3D linear Potential Theory +How to determine hydrodynamic reaction coefficients and wave forces fror +How to determine Velocity Potential	
3D linear Potential Theory +How to determine hydrodynamic reaction coefficients and wave forces from +How to determine Velocity Potential	
+How to determine hydrodynamic reaction coefficients and wave forces from +How to determine Velocity Potential	m Velocity Potential
How to determine Velocity Potential	m Velocity Potential
Motion Bornonco in irregular, wayor:	
Houdin Response in inegular waves.	Cb. 8
· How to determine response in irregular waves from RAO's and wave spec	
 Make down time analysis using wave spectra, scatter diagram and RAO's 	
Structural aspects:	
· Calculate internal forces and bending moments due to waves	
Nonlinear behavior:	Ch.6
 Calculate mean horizontal wave force on wall 	
Use of time domain motion equation	
TUDelft: OE4630 2012-2013 Offshore	Hydromechanics, Part 2 6

Right hand side of m.e.: Wave Exciting Forces Incoming: regular wave with given frequency and propagation direction Assuming the vessel is not moving

From definition of velocity potential:

$$\begin{aligned}
\mu &= \frac{\partial \Phi}{\partial x}, \nu = \frac{\partial \Phi}{\partial y}, w = \frac{\partial \Phi}{\partial z} \\
\text{Substituting in continuity equation:} \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \\
\text{Results in Laplace equation:} \\
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0
\end{aligned}$$

Learning goals Module II, behavior of floating	
bodies in waves	
Definition of ship motions Motion Response in recular waves:	Ch.6
• How to use RAO's	
Understand the terms in the equation of motion: hydromechanic reaction forces, wave exciting forces	
How to solve RAO's from the equation of motion Motion Response in irregular waves:	
How to determine response in irregular waves.	
3D linear Potential Theory	Ch. 7
 How to determine hydrodynamic reaction coefficients and wave forces from Velocity Potential 	cn. 7
How to determine Velocity Potential	
Motion Response in irregular waves:	Ch. 8
 How to determine response in irregular waves from RAO's and wave spectrum with forward speed Determine probability of exceedence 	
Make down time analysis using wave spectra, scatter diagram and RAO's	
Structural aspects:	Ch. 8
 Calculate internal forces and bending moments due to waves 	Cii. 8
Nonlinear behavior:	Ch.6
Calculate mean horizontal wave force on wall	
Use of time domain motion equation	
4	
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION II	D 104

Learning goals Module II, behavior of floating bodies in waves	
Definition of ship motions Motion Response in regular waves: How to use RAOs Orderstand the targe in the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to side RAO's from the equation of motion: hydromechanic reaction brcas, wave exciting forces How to determine response in irregular waves from RAO's and wave spectrum without forward speed	Ch.6
3D linear Potential Theory How to determine hydrodynamic reaction coefficients and wave forces from Velocity Potential Today How to determine Velocity Potential Next week	Ch. 7
Motion Response in irregular waves: • How to determine response in irregular waves from RAO's and wave spectrum with forward speed • Determine probability of exceedence • Make down time analysis using wave spectra, scatter diagram and RAO's	Ch. 8
Structural aspects: • Calculate internal forces and bending moments due to waves	Ch. 8
Nonlinear behavior: • Calculate mean horizontal wave force on wall • Use of time domain motion equation	Ch.6
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 1)5
Marine Engineering, Ship Hydromechanics Section	

 Calculating hydrodynamic coefficients and diffraction force

 $(m+a) \cdot \ddot{z} + b \cdot \dot{z} + c \cdot z = F_w = F_{FK} + F_D$

 m and c = piece of cake

 F_{FK} = almost easy

 a, b, and F_D = kind of difficult \longrightarrow Ch. 7

Solving th	ne Laplace equation
coupled equat	tion of motion:
$\begin{bmatrix} M + \tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{3} \\ \tilde{a}_{21} & M + \tilde{a}_{22} & \tilde{a}_{23} \\ \tilde{a}_{31} & \tilde{a}_{32} & M + \tilde{a}_{33} \\ \tilde{a}_{41} & \tilde{a}_{42} & \tilde{a}_{43} \\ \tilde{a}_{51} & \tilde{a}_{52} & \tilde{a}_{53} \\ \tilde{a}_{61} & \tilde{a}_{62} & \tilde{a}_{63} \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
TUDelft	OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 123
	0E4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID 123 p Hydromechanics Section 123

	lving th	-	quat	tion								
[<i>M</i> + <i>a</i> ₁₁	$a_{12} = a_{13}$ $M + a_{22} = a_{23}$ $a_{32} = M + a_{33}$		$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{y} \\ \ddot{z} \\ \phi \\ \ddot{\theta} \\ \ddot{\theta} \\ \ddot{\theta} \\ \dot{\psi} \end{bmatrix} \begin{pmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{31} \\ b_{61} \end{bmatrix}$	$\begin{array}{c} b_{12} & b_{12} \\ b_{22} & b_{22} \\ b_{32} & b_{32} \\ b_{32} & b_{42} \\ b_{52} & b_{42} \\ b_{52} & b_{52} \\ b_{62} & b_{62} \end{array}$	b_{14} b b_{24} b b_{3} b b_{34} b b_{34} b b_{44} b b_{54} b b_{54} b b_{54} b	b_{15} b_{16} b_{25} b_{26} b_{35} b_{36} b_{45} b_{46} b_{55} b_{56}	$\dot{\vec{x}} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \\ c_{51} \\ c_{61} \end{bmatrix}$	c_{12} c_{1} c_{22} c_{1} c_{32} c_{32} c_{32} c_{42} c_{4} c_{52} c_{4} c_{62} c_{62}	13 C14 23 C24 33 C34 43 C44 33 C54 33 C64	C ₁₅ C ₂₅ C ₃₅ C ₄₅ C ₅₅ C ₆₅		$= \begin{pmatrix} F_{x} \\ F_{y} \\ F_{z} \\ M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}$
			offshore H	ydrome	chanics	s, Part 2	SESS	ION IE)		135	

Learning goals Module II, behavior of floating	
bodies in waves	
Doules III waves	
Definition of shin mations	
Motion Response in regular waves:	Ch.6
How to use RAD's	
Understand the terms in the equation of motion: hydromechanic reaction forces, wave exciting forces	
How to solve RAO's from the equation of motion	
Motion Response in irregular waves:	
How to determine response in irregular waves from RAO's and wave spectrum without forward speed	
3D linear Potential Theory	Ch. 7
+How to determine hydrodynamic reaction coefficients and wave forces from Velocity Potential	Cn. 7
How to determine Velocity Potential	
Motion Response in irregular waves:	<i>a</i> . <i>a</i>
· How to determine response in irregular waves from RAO's and wave spectrum with forward speed	Ch. 8
Determine probability of exceedence	
 Make down time analysis using wave spectra, scatter diagram and RAO's 	
Structural aspects:	Ch. 8
Calculate internal forces and bending moments due to waves	Cn. 8
Nonlinear behavior:	
Calculate mean borizontal wave force on wall	Ch.6
Use of time domain motion equation	
1.4.1.1	
TUDelft OE4630 2012-2013, Offshore Hydromechanics, Part 2 SESSION ID	144
	•••
Marine Engineering, Ship Hydromechanics Section	

Sources images

- [1] Towage of SSDR Transocean Amirante, source: Transocean
- [2] Tower Mooring, source: unknown
- [3] Rogue waves, source: unknown
- [4] Bluewater Rig No. 1, source: Friede & Goldman, LTD/GNU General Public License
- [5] Source: unknown
- [6] Rig Neptune, source: Seafarer Media
- [7] Pieter Schelte vessel, source: Excalibur
- [8] FPSO design basis, source: Statoil
- [9] Floating wind turbines, source: Principle Power Inc.
- [10] Ocean Thermal Energy Conversion (OTEC), source: Institute of Ocean Energy/Saga University
- [11] ABB generator, source: ABB
- [12] A Pelamis installed at the Agucadoura Wave Park off Portugal, source: S.Portland/Wikipedia
- [13] Schematic of Curlew Field, United Kingdom, source: offshore-technology.com
- [14] Ocean Quest Brave Sea, source: Zamakona Yards
- [15] Medusa, A Floating SPAR Production Platform, source: Murphy USA

