CT4491 Lecture. Design Storms and hydrological models for urban drainage systems Marie-claire ten Veldhuis 8-10-2013

Challenge the future

Source: www.nu.nl

Use of rainfall data in urban drainage system design and analysis

Two approaches:

Stationary/steady state analysis: constant rainfall intensity, stationary flow

Dynamic analysis: variable rainfall intensity, non-stationary flow

Rainfall data in urban drainage system design and analysis

How to compose or choose a representative rainfall intensity/event from rainfall time-series?

″uDelft

CIE4491 Lecture. IDF curves and design storms

Rainfall data in urban drainage system design and analysis

> for Design:

How to choose rainfall characteristics, representative of a pre-defined protection level, over a system's lifetime?

➢ for Analysis:

How to find rainfall intensities characteristic of the conditions we want to check performance for?

Rainfall data in storm water system design and analysis

Stationary conditions: representative of real-life conditions?

Why use stationary conditions and IDF-curves?

Rainfall data in storm water system design and analysis

Stationary conditions: representative of real-life conditions?

Why use stationary conditions and IDF-curves?

- > Quickscan required dimensions new system
- > Quickscan capacity limits of existing system
- Manual design: where there is no computer (some areas of the world; 19th and 20th century, up to ±1990)

Rainfall data in storm water system design and analysis

Stationary conditions: representative of real-life conditions?

Why use stationary conditions and IDF-curves?

Where there is a lack of data to build a proper model (many areas worldwide, incl Europe!)

Dynamic rainfall intensity for stormwater design, design storms

Rainfall data in urban drainage design and analysis

If dynamic calculation is reasonable: use dynamic rainfall conditions

What rainfall characteristics to choose?

- Maximum intensity of a rain event (mm/h)
- Total volume of a rain event (mm)
- Duration of a rain event (h)
- > Variation in intensities, high versus low

> What is critical for the system we want to design/analyse?

Depends on characteristics of the catchment: dimensions, imperviousness, slope

Example synthetic standard design T=2 years (NL: "Bui 08") storm

CIE4491 Lecture. IDF curves and design storms

Synthetic storm T=2 jaar (e.g Belgium)

Can you explain why different design storms have been chosen for BE and NL?

What do you expect to find when you apply the BE T=2yr design storm to a system designed according to NL T=2yr storm ?

Use of rainfall data in urban drainage design

Multiple event:

Historical: rainfall measurements e.g. in the Netherlands: time series of KNMI De Bilt, 15 minute time step:

- 10 year series: 1955-1964
- 25 year series: 1955-1979
- \rightarrow Mainly used for analysis of annual pollution from cso's
- → Because (why not for flooding analysis?):

>Synthetic rainfall series

Rainfall input for urban drainage design Intensity - Duration - Frequency Curves F = 10 year

= 5 years

Delft

CIE4491 Lecture. IDF c

ŤUDelft

Rainfall-runoff processes, urban hydrology

Transformation of rainfall into runoff: Urban hydrology

Essentially, 4 processes:

- Evaporation 1
 Depression storage
- > Infiltration \Downarrow
- \succ Overland flow \Longrightarrow

Transformation of rainfall into runoff: Urban hydrology

Essentially, 4 processes:

> Evaporation ↑
> Depression storage ⇔
> Infiltration ↓
> Overland flow (delay) ⇒

How to model the transformation process?

Transformation of rainfall into runoff: Urban hydrology

How to model the transformation process?

Information needed:

??????????????

Transformation of rainfall into runoff

How to model the transformation process?

Information needed:

- Evaporation parameters
- Depression storage parameter
- Infiltration parameters (initial infiltration, max/min infiltration)
- Overland flow time (delay), flow process parameters

Location specific!

- Urban area characteristics
- Parameters of all urban area types
- Dimensions of urban areas

TUDelft

Aerial photograph of urban catchment

CIE4491 Lecture. IDF curves and design storms 2

Topography of urban catchment

Distinguish different catchment

types

Flat roofs Inclined roofs Impervious area Pervious area

TUDelft

Design assignment: average runoff coefficient per subcatchment

For one of the 4 catchment areas:

- Offices in park-like setting
- Residential area, densely built
- Commercial area (shopping centre)
- Residential are, sparsely built
- 4 available modules for hydrological model:
- Evaporation
- Infiltration
- Depression storage
- Overland flow
- Decide how many surface types you want to distinguish
- For each surface type: choose applicable modules
- Indicate importance of each module (+/++)

- > What processes did you include?
- > How many surface types did you distinguish?
- How many model building blocks in total?
- > What is most important process?

	Nr of surf types	# Infiltr ation	#Depressi on storage	#Overlan d flow	Total # modules
Office park					
Residential, dense					
Commercial					
Residential, sparse					

Rainfall-runoff processes, representation in hydrodynamic models

Rainfall runoff model in Sobek: Sobek-Urban RR

Rainfall runoff model in Sobek: Sobek-Urban RR

What processes are included?

Depression storage, infiltration, overland flow delay (evap neglected) How many surface types?

maximum 12 different surface area types)

How many buildings blocks in total?

> maximum 36 model elements

Rainfall runoff model in Sobek: Sobek-Urban RR

How are processes modeled?

Depression storage: fixed storage / area type

Infiltration: Horton – min/max infiltration capacity, decrease/recovery factor

Delay due to overland flow: "rational method" (delay factor) where: q = inflow into sewer [mm.min-1] c = runoff factor [min-1] h = rainfall, dynamic storage on catchment [mm]

Overland flow – delay factor C (min⁻¹)

part of rainfall that runs off in given time step
 larger C → faster runoff process

Sobek RR – Area storage (mm)

12 area types, 1 parameter/area type

of this tune)	. –		-	
or this type)				
r type, subdivided	l in delay of rur	noff:		
	Runoff type			
With a slope	Flat	Stretched flat		
a (q	0.5	1		
d 0	0.5	1		
of O	2	4		
d 2	4	6		
	Rainfall stat of this type) r type, subdivided With a slope d 0 d 0 d 2	Rainfall station <u>R</u> uno of this type) Runoff type r type, subdivided in delay of run Runoff type With a slope Flat d 0 0.5 d 0 0.5 of 0 2 d 2 4	Rainfall station Bunoff Storage of this type)	Rainfall station Bunoff Storage Infiltration of this type) Infiltration Infiltration r type, subdivided in delay of runoff: Runoff type With a slope Flat Stretched flat Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta delay Image: delta dela

Sobek RR – Infiltration

4 area types, 4 infiltration parameters

	Rainfall Runoff Data of N	lode - 42()46			×
	DWF Rainfall station <u>B</u>	unoff <u>S</u> t	orage	nfiltration	Defaults	
	(Common for all nodes	of this typ	e)			
	Area storage					
	Área tune	Infiltration [mm/	capacity /hr]	Time fact	ors [1/hr]	
	Alea (ype	Max.	Min.	Decrease	Recovery	
	Closed paved	0	0	0	0	
	Open paved	2	0.5	3	0.1	
	Unpaved	5	1	3	0.1	
		,		,		
		Infiltration	from depres	sions		
	Infiltration from runoff					
f				<u>0</u> K	<u>C</u> ancel	<u>H</u> elp

Sobek RR – Delay coefficient (1/T)

3 area types

	🞦 Data Edit for Sewerage Inflow	×
	Location <u>S</u> urface DWF Rainfall station <u>Runoff</u> <u>S</u> torage Infiltration De	faults
	(Common for all nodes of this type)	
	Parameter for runoff delay	
	Timefactor runoff Bunoff type delay	
Runoff	f delay factor C:	
	$30/s \simeq 0.5/min$ With a slope 30	
	$12/s \simeq 0.2/min$	
	$6/s \simeq 0.1/min$	
	Unit:	
ŤU Delft	<u> </u>	

Rainfall runoff model in Infoworks CS:

Several options:

- Fixed percentage runoff: portion of rainfall that translates into flow
- OR: 3 runoff processes
- > Area storage
- Infiltration (Horton, Green-Ampt)
- > Delay due to overland flow several options:
- Several types of unit hydrograph
- Reservoir model
- "Rational method" (delay factor)

Delay due to overland flow

Runoff moves across surface to nearest entry point of sewer system

Approaches to model delay process:

- Rational method (delay factor)
- Unit hydrograph
- Reservoir model
- Kinematic wave

(Some date from before computer-era, all still in use)

TUDelft

Rainfall-runoff processes, runoff model reliability

Runoff model reliability

> What parameters are included in the model ?

- > What data is required to estimate those parameters ?
- > How can you assess the reliability of the model ?

Check the hydrological model you built and answer above questions

- > What parameters included ?
- > What data do you need to estimate parameters?

	Parameters included	Data required
Evaporation		
Infiltration		
Depression storage		
Overland flow – delay factor C		
Overland flow – unit hydrograph		
Overland flow – reservoir model		
Overland flow – kinematic wave		

> What parameters included ?

> What data do you need?

	Parameters included	Data required
Evaporation	- / evaporation (mm)	Temp, Humidity, wind speed, radiation
Infiltration	Min/max infiltr.cap (mm/h) decrease/recovery coeff (-)	Data series from infiltration tests
Depression storage	Storage constant per surface type (mm)	Depressions, topographical data
Overland flow – delay factor C	Delay factor C (min ⁻¹)	Data series I(t), Q(t) to fit delay factor
Overland flow – unit hydrograph	Unit hydrograph ordinate (m3/s)	Data series I(t), Q(t) to fit hydrograph
Overland flow – reservoir model	Reservoir constant(s) (min)	Data series I(t), Q(t) to fit reservoir const
Overland flow – kinematic wave	Roughness coefficient, terrain slope	Surface roughnesses, digital elevation model

> What data are typically available to a modeller?

	Parameters included	Data available
Evaporation	- / evaporation (mm)	-
Infiltration	Min/max infiltr.cap (mm/h) decrease/recovery coeff (-)	-
Depression storage	Storage constant per surface type (mm)	-
Overland flow – delay factor C	Delay factor C (min ⁻¹)	-
Overland flow – unit hydrograph	Unit hydrograph ordinate (m3/s)	-
Overland flow – reservoir model	Reservoir constant(s) (min)	-
Overland flow – kinematic wave	Roughness coefficient, terrain slope	-

What parameters included ?What data do you need?

From meteo station near city

	Parameters included	Data required
Evaporation	- / evaporation (mm)	Temp, Humidity, wind speed, radiation
Infiltration	Min/max infiltr.cap (mm/h) decrease/recovery coeff (-)	-
Depression storage	Storage constant per surface type (mm)	Topographical data – digital elevation model
Overland flow – delay factor C	Delay factor C (min ⁻¹)	1/few location times series NB
Overland flow — unit hydrograph	Unit hydrograph ordinate (m3/s)	Idem resolution
Overland flow – reservoir model	Reservoir constant(s) (min)	Idem
Overland flow – kinematic wave	Roughness coefficient, terrain slope	Digital elevation model

Hydrological model reliability

- > Epistemic uncertainties ?
- > Aleatory uncertainties ?

	Parameters included	Data required
Evaporation	- / evaporation (mm)	Temp, Humidity, wind speed, radiation
Infiltration	Min/max infiltr.cap (mm/h) decrease/recovery coeff (-)	Data series from infiltration tests
Depression storage	Storage constant per surface type (mm)	Depressions, topographical data
Overland flow – delay factor C	Delay factor C (min ⁻¹)	Data series I(t), Q(t) to fit delay factor
Overland flow – unit hydrograph	Unit hydrograph ordinate (m3/s)	Data series I(t), Q(t) to fit hydrograph
Overland flow – reservoir model	Reservoir constant(s) (min)	Data series I(t), Q(t) to fit reservoir const
Overland flow – kinematic wave	Roughness coefficient, terrain slope	Surface roughnesses, digital elevation model

Hydrological model reliability

> Epistemic uncertainties ?> Aleatory uncertainties ?

NB: subsidence

Natural variations in roughness

	Parameters included	Data required	
Evaporation	- / evaporation (mm)	Temp, Humidity, wind speed, radiation	
Infiltration	Min/max infiltr.cap (mm/h) decrease/recovery coeff (-)	Data series from / infiltration tests /	
Depression storage	Storage constant per surface type (mm)	Depressions, topographical data	
Overland flow – delay factor C	Delay factor C (min ⁻¹)	Data series I(t), Q(t) to fit delay factor	
Overland flow — unit hydrograph	Unit hydrograph ordinate (m3/s)	Data series I(t), Q(t) to fit hydrograph	
Overland flow – reservoir model	Reservoir constant(s) (min)	Data series I(t), Q(t) to fit reservoir const	
Overland flow – kinematic wave	Roughness coefficient, terrain slope	Surface roughnesses, digital elevation model	

predictive median

observed value

true value

845

835

Time (day) (c) 840

830

Rain (mm) 50 05

825

- > this is the problem of
- overparameterisation, leading to

From: Rena equifinality (multiple solution can fit)

of identifying input and structural errors CIE4491 Lecture. IDF curves and design storms

1480

60

(mm) 20 20 1500

830

825

Time (day)

(a)

835

Time (day) (c) 840

1520

1540

90% predictive interval

predictive median

observed value

true value

845

- Models fit for observations at 1/few locations
- Model uncertainty must be made explicit

From: Renard et al. 2010. Understanding predictive uncertainty in hydrologic modeling - the challenge of identifying input and structural errors CIE4491 Lecture. IDF curves and design storms