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Use of rainfall data

in urban drainage system design
and analysis

Two approaches:

» Stationary/steady state analysis:
constant rainfall intensity, stationary flow

» Dynamic analysis:
variable rainfall intensity, non-stationary flow
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Rainfall data in urban drainage

system design and analysis

How to compose or choose a representative
rainfall intensity/event from rainfall time-series?
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Rainfall data in urban drainage
system design and analysis

» for Design:

How to choose rainfall characteristics, representative of
a pre-defined protection level, over a system’s lifetime?

»for Analysis:

How to find rainfall intensities characteristic of the
conditions we want to check performance for?
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Rainfall data in storm water system
design and analysis

Stationary conditions: representative of real-life conditions?

Why use stationary conditions and IDF-curves?

%
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Rainfall data in storm water system
design and analysis

Stationary conditions: representative of real-life conditions?

Why use stationary conditions and IDF-curves?
» Quickscan required dimensions new system
» Quickscan capacity limits of existing system

» Manual design: where there is no computer (some areas of the
world; 19t and 20t century, up to £1990)

%
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Rainfall data in storm water system
design and analysis

Stationary conditions: representative of real-life conditions?

Why use stationary conditions and IDF-curves?

» Where there is a lack of data to build a proper model (many
areas worldwide, incl Europe!)
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Dynamic rainfall intensity for
stormwater design, design
storms
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Rainfall data in urban drainage
design and analysis

» If dynamic calculation is reasonable: use dynamic rainfall
conditions

What rainfall characteristics to choose?

» Maximum intensity of a rain event (mm/h)
» Total volume of a rain event (mm)

» Duration of a rain event (h)

» Variation in intensities, high versus low

» What is critical for the system we want to design/analyse?
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» What is critical for the system we want to design/analyse?

&

»Depends on characteristics of the catchment: dimensions,
imperviousness, slope
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Example synthetic standard design
storm  T=2 years (NL: “Bui 08”)
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Synthetic storm T=2 jaar (e.g Belgium)

250 ‘
T=2 years:
20 Rainfall volume 48.09 mm
© Max rainfall intensity: 53 mm/h
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| T=2 years:
Rainfall volume 48.09 mm
Max rainfall intensity: 53 mm/h
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* Max intensity 39.6mm/h
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» Can you explain why different design storms have been chosen
for BE and NL?

» What do you expect to find when you apply the BE T=2yr design
storm to a system designed according to NL T=2yr storm ?
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Use of rainfall data in urban
drainage design

Multiple event:

»Historical: rainfall measurements
e.g. in the Netherlands: time series of KNMI De Bilt,
15 minute time step:
10 year series: 1955-1964
- 25 year series: 1955-1979
—> Mainly used for analysis of annual pollution from cso’s
- Because (why not for flooding analysis?):

»Synthetic rainfall series
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Rainfall input for urban drainage
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» Stationary design
- IDF curves, fixed design rainfall intensity

» Dynamic design, single event:
- Design storm

111111

neerslag [I/s.ha]

» Multiple event/rainfall series
- Historical series
e.g. in the Netherlands: time series of KNMI De B|It 10 or 25
yrs e =
- Synthetic rainfall series B
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Robust method
stationary modelling

IDF curves

Storm event

dynamic modelling

Design storms

Rational method

Branched networks
(few loops)

calculations
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Water levels in nodes

[Stationary hydraulic

[ Rainfall runoff modelling} [ Rainfall runoff modelling}

Hydrodynamic model
calculations

Detailed branched

and looped networks

overstort

gemaal
riclerin, odel 2

Dynamic hydraulic
calculations

Q-t diagram per node
per storm event

Rainfall series
dynamic modelling

Standard rainfall series

Pl

| Rainfall runoff modelling}

q Hydrodynamic model
calculations

Simplified branched
\_and looped networks

Dynamic hydraulic
calculations

s )

Q-t diagram per node for
series of storm events
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Rainfall-runoff processes,
urban hydrology
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Transtformation of rainfall into
runoif: Urban hydrology
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pavement

Essentially, 4 processes:

» Evaporation ﬂ
> Depression storage <=

» Infiltration U
» Overland flow =

Infittation - Gullyf

4 A Rainfall

B Rainfall to runoff
C Overland flow

1 D Flow in the sewer system
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Transtformation of rainfall into
runoif: Urban hydrology

\‘ . . \‘ N ‘\\ )
"\ S \\‘ %
y  Footpath/ « Bl X

pavement

Essentially, 4 processes:

» Evaporation ﬂ
> Depression storage <=

> Infiltration U
> Overland flow (delay) =

Infiltration.

How to model the D
transformation process? oo

1 D Flow in the sewer system
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Transtformation of rainfall into
runoif: Urban hydrology
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How to model the
transformation process?

Information needed:

> ?
> ?
> ?
> ? y
> 2 Infiltration:
> ? 4 A Rainfall
B Rainfall to runoff

> ? C Overland flow

. 1 D Flow in the sewer system
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Transformation of rainfall into runoff

How to model the transformation :

N NN
§  Footpath/ «
) pavement

Road

Information needed:

» Evaporation parameters

» Depression storage parameter

» Infiltration parameters (initial
infiltration, max/min infiltration)

» Overland flow time (delay), flow

process parameters Poaeed ] A

Infiltration

i systemii

C Overland flow
D Flow in the sewer

Location specific!
» Urban area characteristics
» Parameters of all urban area types
>
5

Dimensions of urban areas
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h of urban catchment
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Topography of urban catchment
23 N e (A
Detailed topographical map S‘W N ¥

1:10,000) 5

'i';u Delft CIE4491 Lecture. IDF curves and design storms 24




Distinguish different catchment
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Design assignment: average runofif
coetfficient per subcatchment
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Build a hydrological model

For one of the 4 catchment areas:

» Offices in park-like setting

> Residential area, densely built

» Commercial area (shopping centre)
» Residential are, sparsely built

4 available modules for hydrological model:
» Evaporation

» Infiltration

» Depression storage

» Overland flow

» Decide how many surface types you want to distinguish
» For each surface type: choose applicable modules
» Indicate importance of each module (+/++)
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Build a hydrological model

» What processes did you include?

» How many surface types did you distinguish?
» How many model building blocks in total?

» What is most important process?

Nr of # #Depressi | #Overlan | Total #
surf Infiltr | on storage | d flow modules
types |ation

Office park

Residential,
dense

Commercial

Residential,
sparse
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Rainfall-runoff processes,
representation in hydrodynamic
models
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Rainfall runoff module

Rainfall runoff model in Sobek: Sobek-Urban RR

r
raintall evaporation

netto ramntall

surface storace

|' \mn off towards sewersvstem

infiltration

]
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Rainfall runoff module

Rainfall runoff model in Sobek: Sobek-Urban RR

What processes are included?

» Depression storage, infiltration, overland flow delay (evap neglected)
How many surface types?

» maximum 12 different surface area types)

How many buildings blocks in total? oron
» maximum 36 model elements | ! /_\mmﬂm

\mn off towards sewersystem
infiltration
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Rainfall runoff module
Rainfall runoff model in Sobek: Sobek-Urban RR

How are processes modeled?
» Depression storage: fixed storage / area type

» Infiltration: Horton — min/max infiltration capacity,
decrease/recovery factor

» Delay due to overland flow:
“rational method” (delay factor) q = C *h
where: q = inflow into sewer [mm.min-1]
¢ = runoff factor [min-1]
h = rainfall, dynamic storage on catchment [mm]

'i';u Delft CIE4491 Lecture. IDF curves and design storms 33
A G S S S S S S ESESE ST ST E S S S T T




Rainfall runoff module

Overland flow — delay factor C (min-1)
. part of rainfall that runs off in given time step

. larger C — faster runoff process
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Sobek RR — Area storage (mm)

12 area types, 1 parameter/area type
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& D ata Edit for Sewerage Inflow

Location ] Surface ] DhwF I R ainfall =tation I Runoff I Storage I | rifilkr atic I I:IIEI‘auIt&:I

[Common for all nodes of this type]

— frea storage

Surface storage in mm per tppe, subdivided in delay of runaff;

Runoff type
Area tppe
With a slope Flat Stretched fat
Closed paved o 0.5 1
Open paved |0 05 1
Roof |0 2 4
Unpaved |2 4 B




Sobek RR - Infiltration

4 area types, 4 infiltration parameters

% Rainfall Runoff Data of Node - 42046

[Common for all nodes of this type]

Area storage
Irfiltration capacity Time factors [1./hr]
Area type [mméhir]

b ax. Min. Decreaze  Recoven
Clozed paved | | 0 | 0 | 0
Open paved | | 0.5 | 3 | 01
Roof | 0| 0| 0| 0
Unpaved | | | 3 | 01

[w Infiltration from depreszions

[ Infiltration fron runaff

fuoar 5] o | e | 3




[Common for all nodes of this type]

— Parameter for runoff delay

Runoff del
30/
12/
6/

ay factor C:
's =~ 0.5/min
's = 0.2/min
's = 0.1/min

[t

Sobek RR — Delay coefficient (1/7T)

3 area types
& Data Edit for Sewerage Inflow

Funoff type

YWith a zlope
Flat
Stretched flat

Tirnetactar runaft
delay

a3l

12

=

o 1/sec " 1/min T 1/his

]|
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Rainfall runoff module

Rainfall runoff model in Infoworks CS:

Several options:

» Fixed percentage runoff: portion of rainfall that translates into
flow

OR: 3 runoff processes

» Area storage

» Infiltration (Horton, Green-Ampt)

» Delay due to overland flow — several options:

- Several types of unit hydrograph

- Reservoir model

- “Rational method” (delay factor)
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Delay due to overland flow

Runoff moves across surface to nearest entry pomt of sewer
system k % S o

Approaches to model delay process:
» Rational method (delay factor)
» Unit hydrograph
» Reservoir model
» Kinematic wave

(Some date from before computer-era, all still in use)
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Rainfall-runoff processes, runoff
model reliability
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Runoif model reliability

» What parameters are included in the model ?
» What data is required to estimate those parameters ?

» How can you assess the reliability of the model ?

» Check the hydrological model you built and answer
above questions
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Build a hydrological model

» What parameters included ?
» What data do you need to estimate parameters?

Parameters included Data required

Evaporation

Depression
storage

Overland flow —
delay factor C

Overland flow —
unit hydrograph

Overland flow —
reservoir model

Overland flow —
- | kinematic wave




Build a hydrological model

» What parameters included ?
» What data do you need?

Parameters included Data required

Evaporation - [/ evaporation (mm) Temp, Humidity, wind
speed, radiation
Min/max infiltr.cap (mm/h) Data series from
decrease/recovery coeff (-) infiltration tests
Depression Storage constant per surface  Depressions,
storage type (mm) topographical data
Overland flow — Delay factor C (min1) Data series I(t), Q(t)
delay factor C to fit delay factor
Overland flow — Unit hydrograph ordinate Data series I(t), Q(t)
unit hydrograph (m3/s) to fit hydrograph
Overland flow — Reservoir constant(s) (min) Data series I(t), Q(t)
reservoir model to fit reservoir const
Overland flow — Roughness coefficient, terrain  Surface roughnesses,
| kinematic wave slope digital elevation model S




Build a hydrological model

» What data are typically available to a modeller?

Parameters included Data available

Evaporation - [/ evaporation (mm)

Min/max infiltr.cap (mm/h)
decrease/recovery coeff (-)

Depression Storage constant per surface
storage type (mm)

Overland flow — Delay factor C (min1) -
delay factor C

Overland flow — Unit hydrograph ordinate
unit hydrograph (m3/s)

Overland flow — Reservoir constant(s) (min)
reservoir model

s Overland flow — Roughness coefficient, terrain
kinematic wave slope




Build a hydrological model

» What parameters included ?
» What data do you need?

_ Parameters included

From meteo
station near city

Data required

Evaporation

Depression
storage

Overland flow —

delay factor C

Overland flow —
unit hydrograph

Overland flow —
reservoir model

Overland flow —
- | kinematic wave

- [/ evaporation (mm)

Min/max infiltr.cap (mm/h)
decrease/recovery coeff (-)

Storage constant per surface
type (mm)
Delay factor C (min1)

Unit hydrograph ordinate
(m3/s)

Reservoir constant(s) (min)

Roughness coefficient, terrain
slope

Temp, Humidity, wind
speed, radiation

Topographical data —
digital elevation model

1/fewNQcation times
serie NB:}

Idem resolution

Idem

Digital elevation model
[




Hydrological model reliability

» Epistemic uncertainties ?
» Aleatory uncertainties ?

Parameters included Data required

Evaporation - [/ evaporation (mm) Temp, Humidity, wind
speed, radiation
Min/max infiltr.cap (mm/h) Data series from
decrease/recovery coeff (-) infiltration tests
Depression Storage constant per surface  Depressions,
storage type (mm) topographical data
Overland flow — Delay factor C (min1) Data series I(t), Q(t)
delay factor C to fit delay factor
Overland flow — Unit hydrograph ordinate Data series I(t), Q(t)
unit hydrograph (m3/s) to fit hydrograph
Overland flow — Reservoir constant(s) (min) Data series I(t), Q(t)
reservoir model to fit reservoir const
Overland flow — Roughness coefficient, terrain  Surface roughnesses,
| kinematic wave slope digital elevation model S




Hydrological model reliability

[ NB: subsidence

» Epistemic uncertainties ?

> Aleatory uncertainties ? \ Natural variations in roughness,
Parameters incluiled Data required

Evaporation - [ evaporation (mm Temp, Humidity, wingd
speed, radiation

Min/max infiltr.cap (mmns Data series from

w decrease/recovery coeff\(- infiltration tests
Depression Storage constant per surface\ Depressions,
storage type (mm) topographical data
Overland flow — Delay factor C (min1) Data series I(t), Q(t)
delay factor C to fit delay factor
Overland flow — Unit hydrograph ordinate Data series I(t), Q(t)
unit hydrograph (m3/s) to fit hydrograph
Overland flow — Reservoir constant(s) (min) Data series I(t), Q(t)
reservoir model to fit reservoir const
Overland flow — Roughness coefficient, terrain  Surface roughnesses,
| kinematic wave slope digital elevation model N
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From: Schellart et al. 2012. Influence of rainfall estimation error and
spatial variability on sewer flow prediction at a small urban scale
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Models fit for observations at 1/few

locations
> this is the problem of

overparameterisation, leading to
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uncertai drologic modeling - the challenge
R mmmad W, of identifying input and structural errors _
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From: Schellart et al. 2012. Influence of rainfall estimation error and
spatial variability on sewer flow prediction at a small urban scale
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(> Models fit for observations at 1/few
locations
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» Model uncertainty must be made

explicit P
From: RWM‘FH‘ITI‘WWWW

uncertainty in hydrologic modeling - the challenge

of identifying input and structural errors
CIE4491 Lecture. IDF curves and design storms 50






