Dredging Processes

Dr.ir. Sape A. Miedema

6. Rock Cutting
Dredging A Way Of Life

Delft University of Technology – Offshore & Dredging Engineering
Offshore A Way Of Life
Offshore & Dredging Engineering

Dr.ir. Sape A. Miedema
Educational Director
Rock Cutting
Rock Cutterheads

NORMAL HELIX CUTTER

REVERSE HELIX CUTTER

WIDE CHISEL

CL FLARED

BELOW CL FLARED TYPE A

BELOW CL FLARED TYPE B (CLAY FLARE)

"DEVIL TEETH" (FLORIDA)
Brittle versus Ductile

Brittle & Ductile Cutting

Delft University of Technology – Offshore & Dredging Engineering
Brittle versus Ductile
Rock Cutting

Delft University of Technology – Offshore & Dredging Engineering
\[F_c = \sigma_T \cdot h_i \cdot w \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta)} \]

\[F_{ch} = F_c \]

\[F_{cv} = 0 \]

\[E_{sp} = \frac{F_{ch} \cdot v_c}{h_i \cdot w \cdot v_c} = \sigma_T \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta)} \]
Evans Brittle Horizontal Force Coefficient

Evans Brittle Horizontal Force Coefficient λ_{HT} vs Blade Angle α

© S.A.M.

Delft University of Technology – Offshore & Dredging Engineering
Evans under an Angle
Evans under an Angle

\[F_c = \sigma_T \cdot h \cdot w \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta + \varepsilon)} \]

\[F_{ch} = F_c \cdot \cos(\varepsilon) \]

\[F_{cv} = F_c \cdot \sin(\varepsilon) \]

\[E_{sp} = \frac{F_{ch} \cdot v_c}{h_i \cdot w \cdot v_c} = \sigma_T \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta + \varepsilon)} \cdot \cos(\varepsilon) \]
Evans Pick Point

Delft University of Technology – Offshore & Dredging Engineering
Evans Pick Point

\[F_c = \sigma_T \cdot h \cdot w \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(2 \cdot \alpha + \delta)} \]

\[F_{ch} = F_c \cdot \cos(\alpha) \]

\[F_{cv} = F_c \cdot \sin(\alpha) \]

\[E_{sp} = \frac{F_{ch} \cdot v_c}{h_i \cdot w \cdot v_c} = \sigma_T \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(2 \cdot \alpha + \delta)} \cdot \cos(\alpha) \]
\[F_h = \frac{1}{(n+1)} \cdot \frac{2 \cdot c \cdot h_i \cdot w \cdot \cos(\varphi) \cdot \sin(\alpha + \delta)}{1 + \cos(\alpha + \delta + \varphi)} = \frac{1}{(n+1)} \cdot \lambda_{HF} \cdot c \cdot h_i \cdot w \]

\[F_v = \frac{1}{(n+1)} \cdot \frac{2 \cdot c \cdot h_i \cdot w \cdot \cos(\varphi) \cdot \cos(\alpha + \delta)}{1 + \cos(\alpha + \delta + \varphi)} = \frac{1}{(n+1)} \cdot \lambda_{VF} \cdot c \cdot h_i \cdot w \]

Stress Distribution Nishimatsu

- Distance along the shear plane
- Values for different parameters:
 - \(n = 0.00 \)
 - \(n = 0.25 \)
 - \(n = 0.50 \)
 - \(n = 1.00 \)
 - \(n = 2.00 \)
 - \(n = 4.00 \)
 - \(n = 8.00 \)
The Ductile Horizontal Coefficient

Ductile Horizontal Force Coefficient λ_{HF} vs Blade Angle α

- $\Phi = 0$ degrees
- $\Phi = 5$ degrees
- $\Phi = 10$ degrees
- $\Phi = 15$ degrees
- $\Phi = 20$ degrees
- $\Phi = 25$ degrees
- $\Phi = 30$ degrees
- $\Phi = 35$ degrees
- $\Phi = 40$ degrees
- $\Phi = 45$ degrees

Blade Angle α (Degrees) vs Ductile Horizontal Force Coefficient λ_{HF} (°)
The Ductile Vertical Coefficient

Ductile Vertical Force Coefficient λ_{VF} vs Blade Angle α

- $\Phi = 0$ degrees
- $\Phi = 5$ degrees
- $\Phi = 10$ degrees
- $\Phi = 15$ degrees
- $\Phi = 20$ degrees
- $\Phi = 25$ degrees
- $\Phi = 30$ degrees
- $\Phi = 35$ degrees
- $\Phi = 40$ degrees
- $\Phi = 45$ degrees

Delft University of Technology – Offshore & Dredging Engineering
Forces on the Layer Cut

\[\text{Diagram showing forces and variables such as } F_h, F_v, v_c, h_b, N_1, N_2, S_1, S_2, \alpha, \delta, \varphi, \beta, h_i. \]
Forces on the Blade

\[v_c \]

\[v_c \]

\[F_h \]

\[F_v \]

\[h_b \]

\[h_i \]

\[\alpha \]

\[\beta \]

\[\delta \]

\[K_2 \]

\[S_2 \]

\[N_2 \]

Delft University of Technology – Offshore & Dredging Engineering
Moments

\[F_h \]
\[F_v \]
\[v_c \]
\[h_b \]
\[\alpha \]
\[R_1 \]
\[N_1 \]
\[h_i \]
\[R_2 \]
\[N_2 \]

Delft University of Technology – Offshore & Dredging Engineering
Resulting Equations

\[K_2 = \frac{C \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)} \]

\[F_h = K_2 \cdot \sin(\alpha + \delta) \]

\[F_v = K_2 \cdot \cos(\alpha + \delta) \]
Mohr Circle
Brittle Cutting

The Tear Type

\[v_c \]
\[F_h \]
\[F_v \]
\[h_b \]
\[\alpha \]
\[\beta \]
\[h_i \]
Transition Tensile Failure – Shear Failure

Tensile Failure vs Shear Failure

© S.A.M.
Transition Tensile Failure – Shear Failure

Tensile Failure vs Shear Failure

Ratio UCS/BS

Blade Angle α (Degrees)

- $\Phi=0$ degrees
- $\Phi=5$ degrees
- $\Phi=10$ degrees
- $\Phi=15$ degrees
- $\Phi=20$ degrees
- $\Phi=25$ degrees
- $\Phi=30$ degrees
- $\Phi=35$ degrees
- $\Phi=40$ degrees
- $\Phi=45$ degrees

Ductile limit
Brittle limit

© S.A.M.

Delft University of Technology – Offshore & Dredging Engineering
The Brittle Horizontal Coefficients

Brittle Horizontal Force Coefficient λ_{HT} vs Blade Angle α

Blade Angle α (Degrees)

Delft University of Technology – Offshore & Dredging Engineering
The Brittle Vertical Coefficients

Brittle Vertical Force Coefficient λ_{VT} vs Blade Angle α

- $\Phi=0$ degrees
- $\Phi=5$ degrees
- $\Phi=10$ degrees
- $\Phi=15$ degrees
- $\Phi=20$ degrees
- $\Phi=25$ degrees
- $\Phi=30$ degrees
- $\Phi=35$ degrees
- $\Phi=40$ degrees
- $\Phi=45$ degrees

Blade Angle (Degrees)
Hyperbaric Rock Cutting
Measurements in Carthage Marble by Rafatian

Specific Energy as a Function of Pressure in Carthage Marble

Esp (MPa)

Pressure (MPa)

Measurements

Brittle

Ductile

Faculty of 3mE - Dredging Engineering
Measurements in Indiana Limestone by Rafatian

Specific Energy as a Function of Pressure in Indiana Limestone

Esp (MPa) vs Pressure (MPa)

- Measurements
- Brittle
- Ductile

Faculty of 3mE - Dredging Engineering
Measurements of Kaitkai & Lei

Cutting Forces in Carthage Marble

Pressure (MPa)

Fh, Fv (N)

© S.A.M
Forces on the Layer Cut

Delft University of Technology – Offshore & Dredging Engineering
Forces on the Blade
Resulting Equations

\[K_2 = \frac{W_2 \cdot \sin(\alpha + \beta + \varphi) + W_1 \cdot \sin(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)} + \frac{C \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)} \]

\[F_h = -W_2 \cdot \sin(\alpha) + K_2 \cdot \sin(\alpha + \delta) \]

\[F_v = -W_2 \cdot \cos(\alpha) + K_2 \cdot \cos(\alpha + \delta) \]
Curling/Balling Type

The Curling Type

- v_c
- F_h
- F_v
- h_b
- α
- h_i
- β
Moments

Delft University of Technology – Offshore & Dredging Engineering
Equilibrium of Moments

\[
\left(W_2 \cdot \sin(\delta) + W_1 \cdot \sin(\alpha + \beta + \delta) - C \cdot \cos(\alpha + \beta + \delta) + A \cdot \cos(\delta) \cdot \cos(\phi) - W_1 \right) \cdot \frac{\lambda_1 \cdot h_i}{\sin(\beta)} \\
= \left(W_2 \cdot \sin(\alpha + \beta + \varphi) + W_1 \cdot \sin(\phi) + C \cdot \cos(\phi) - A \cdot \cos(\alpha + \beta + \varphi) \cdot \cos(\delta) - W_2 \right) \cdot \frac{\lambda_2 \cdot h_b}{\sin(\alpha)}
\]

\[
A \cdot x^2 + B \cdot x + C = 0
\]

\[
h_b = x = \frac{-B - \sqrt{B^2 - 4 \cdot A \cdot C}}{2 \cdot A}
\]

\[
A = \frac{\lambda_2 \cdot p_{2m} \cdot \sin(\alpha + \beta + \delta + \varphi) - \lambda_2 \cdot p_{2m} \cdot \sin(\alpha + \beta + \varphi) \cdot \cos(\delta) + a \cdot \lambda_2 \cdot \cos(\alpha + \beta + \varphi) \cdot \cos(\delta)}{\sin(\alpha) \cdot \sin(\alpha)}
\]

\[
B = \frac{\lambda_1 \cdot p_{1m} \cdot \sin(\delta) \cdot \cos(\phi) - \lambda_2 \cdot p_{1m} \cdot \cos(\delta) \cdot \sin(\phi) - c \cdot \lambda_2 \cdot \cos(\delta) \cdot \cos(\phi) + a \cdot \lambda_1 \cdot \cos(\phi) \cdot \cos(\delta)}{\sin(\alpha) \cdot \sin(\beta)}
\]

\[
C = \frac{\lambda_1 \cdot p_{1m} \cdot \sin(\alpha + \beta + \delta) \cdot \cos(\phi) - \lambda_1 \cdot p_{1m} \cdot \sin(\alpha + \beta + \delta + \varphi) - c \cdot \lambda_1 \cdot \cos(\alpha + \beta + \delta) \cdot \cos(\phi)}{\sin(\beta) \cdot \sin(\beta)}
\]
Forces measured by Zijssling

![Graph showing forces measured by Zijssling against bottomhole pressure. The graph is labeled with various data points for different pressures and hole sizes.](image-url)

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering
Specific Energy measured by Zijsling

![Graph showing the relationship between Specific Energy (Esp) and Bottomhole Pressure (MPa). The graph includes data points for different conditions, such as various hole sizes and pressures.]
Specific Energy 60 Degrees
Specific Energy 110 Degrees

The specific energy E_{sp} as a function of the compressive strength of rock, for different ratios between the compressive strength and the tensile strength. For a 110 degree blade.
Specific Energy

Rock Cutting

Esp in kPa

Compressive strength in kPa

Ductile

Brittle
Questions?
Sources images

1. A model cutter head, source: Delft University of Technology.
2. Off shore platform, source: Castrol (Switzerland) AG
3. Off shore platform, source: http://www.wireropetraining.com
4. Different rock cutterheads, source: unknown.