Dredging Processes

Dr.ir. Sape A. Miedema
6. Rock Cutting

Dredging A Way Of Life

Delft University of Technology - Offshore \& Dredging Engineering

TUDelft
Offshore \& Dredging Engineering

Offshore \& Dredging Engineering

Drir. Sape A. Miedema Educational Director

Delft University of Technology Offshore \& Dredging Engineering

Faculty of 3mE - Faculty CiTG - Offshore \& Dredging Engineering

Rock Cutting

Rock Cutterheads

Delft University of Technology

Brittle versus Ductile

Delft University of Technology - Offshore \& Dredging Engineering

Brittle versus Ductile

Delft University of Technology - Offshore \& Dredging Engineering

Rock Cutting

Delft University of Technology - Offshore \& Dredging Engineering

Evans Basic

Delft University of Technology - Offshore \& Dredging Engineering

Evans Basic

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{c}}=\sigma_{\mathbf{T}} \cdot \mathbf{h}_{\mathbf{i}} \cdot \mathbf{w} \cdot \frac{2 \cdot \sin (\alpha+\delta)}{1-\sin (\alpha+\delta)} \\
& \mathbf{F}_{\mathbf{c h}}=\mathbf{F}_{\mathbf{c}} \\
& \mathbf{F}_{\mathbf{c v}}=\mathbf{0} \\
& \mathbf{E}_{\mathrm{sp}}=\frac{\mathbf{F}_{\mathbf{c h}} \cdot \mathbf{v}_{\mathbf{c}}}{\mathbf{h}_{\mathbf{i}} \cdot \mathbf{w} \cdot \mathbf{v}_{\mathbf{c}}}=\sigma_{\mathbf{T}} \cdot \frac{\mathbf{2} \cdot \sin (\alpha+\delta)}{1-\sin (\alpha+\delta)}
\end{aligned}
$$

Delft University of Technology - Offshore \& Dredging Engineering

Evans Brittle Horizontal Force Coefficient

Evans Brittle Horizontal Force Coefficient $\boldsymbol{\lambda}_{H T}$ vs Blade Angle α

—Phi=20 degrees
—Phi=25 degrees
——Phi=30 degrees
_Phi=35 degrees
—Phi=40 degrees

Evans under an Angle

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{c}}=\sigma_{\mathrm{T}} \cdot \mathbf{h} \cdot \mathbf{w} \cdot \frac{2 \cdot \sin (\alpha+\delta)}{1-\sin (\alpha+\delta+\varepsilon)} \\
& \mathbf{F}_{\mathrm{ch}}=\mathbf{F}_{\mathbf{c}} \cdot \cos (\varepsilon) \\
& \mathbf{F}_{\mathrm{cv}}=\mathbf{F}_{\mathbf{c}} \cdot \sin (\varepsilon) \\
& \mathbf{E}_{\mathrm{sp}}=\frac{\mathbf{F}_{\mathbf{c h}} \cdot \mathbf{v}_{\mathbf{c}}}{\mathbf{h}_{\mathbf{i}} \cdot \mathbf{w} \cdot \mathbf{v}_{\mathbf{c}}}=\sigma_{\mathrm{T}} \cdot \frac{2 \cdot \sin (\alpha+\delta)}{1-\sin (\alpha+\delta+\varepsilon)} \cdot \cos (\varepsilon)
\end{aligned}
$$

Evans Pick Point

Evans Pick Point

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{c}}=\sigma_{\mathrm{T}} \cdot \mathbf{h} \cdot \mathbf{w} \cdot \frac{2 \cdot \sin (\alpha+\delta)}{1-\sin (2 \cdot \alpha+\delta)} \\
& \mathbf{F}_{\mathrm{ch}}=\mathrm{F}_{\mathrm{c}} \cdot \cos (\alpha) \\
& \mathbf{F}_{\mathrm{cv}}=\mathrm{F}_{\mathrm{c}} \cdot \sin (\alpha) \\
& \mathbf{E}_{\mathrm{sp}}=\frac{\mathbf{F}_{\mathbf{c h}} \cdot \mathbf{v}_{\mathbf{c}}}{\mathbf{h}_{\mathbf{i}} \cdot \mathbf{w} \cdot \mathbf{v}_{\mathbf{c}}}=\sigma_{\mathrm{T}} \cdot \frac{2 \cdot \sin (\alpha+\delta)}{1-\sin (2 \cdot \alpha+\delta)} \cdot \cos (\alpha)
\end{aligned}
$$

Nishimatsu

Nishimatsu

$$
F_{h}=\frac{1}{(n+1)} \cdot \frac{2 \cdot c \cdot h_{i} \cdot w \cdot \cos (\varphi) \cdot \sin (\alpha+\delta)}{1+\cos (\alpha+\delta+\varphi)}=\frac{1}{(n+1)} \cdot \lambda_{H F} \cdot c \cdot h_{i} \cdot w
$$

$$
F_{v}=\frac{1}{(n+1)} \cdot \frac{2 \cdot \mathbf{c} \cdot h_{i} \cdot \mathbf{w} \cdot \cos (\varphi) \cdot \cos (\alpha+\delta)}{1+\cos (\alpha+\delta+\varphi)}=\frac{1}{(n+1)} \cdot \lambda_{V F} \cdot c \cdot h_{i} \cdot w
$$

Stress Distribution Nishimatsu

Delft University of Technology - Offshore \& Dredging Engineering

The Ductile Horizontal Coefficient

Delft University of Technology - Offshore \& Dredging Engineering

The Ductile Vertical Coefficient

Ductile Vertical Force Coefficient $\boldsymbol{\lambda}_{\mathrm{VF}}$ vs Blade Angle $\boldsymbol{\alpha}$

Delft University of Technology - Offshore \& Dredging Engineering

Definitions

Delft University of Technology - Offshore \& Dredging Engineering

Forces on the Layer Cut

Delft University of Technology - Offshore \& Dredging Engineering

Forces on the Blade

Delft University of Technology - Offshore \& Dredging Engineering

Moments

Delft University of Technology - Offshore \& Dredging Engineering

Resulting Equations

$$
K_{2}=\frac{C \cdot \cos (\varphi)}{\sin (\alpha+\beta+\delta+\varphi)}
$$

$$
F_{h}=K_{2} \cdot \sin (\alpha+\delta)
$$

$$
F_{V}=K_{2} \cdot \cos (\alpha+\delta)
$$

Mohr Circle

Delft University of Technology - Offshore \& Dredging Engineering

Brittle Cutting

Delft University of Technology - Offshore \& Dredging Engineering

Tensile Failure

Delft University of Technology

Transition Tensile Failure - Shear Failure

Delft University of Technology - Offshore \& Dredging Engineering

Transition Tensile Failure - Shear Failure

Delft University of Technology - Offshore \& Dredging Engineering

The Brittle Horizontal Coefficients

Delft University of Technology - Offshore \& Dredging Engineering

The Brittle Vertical Coefficients

Hyperbaric Rock Cutting

Measurements in Carthage Marble by Rafatian

Faculty of 3mE - Dredging Engineering

Measurements in Indiana Limestone by Rafatian

Faculty of 3mE - Dredging Engineering

Measurements of Kaitkai \& Lei

Faculty of 3mE - Dredging Engineering

Forces on the Layer Cut

Delft University of Technology - Offshore \& Dredging Engineering

Delft University of Technology - Offshore \& Dredging Engineering

Resulting Equations

$$
\begin{aligned}
& K_{2}=\frac{W_{2} \cdot \sin (\alpha+\beta+\varphi)+W_{1} \cdot \sin (\varphi)}{\sin (\alpha+\beta+\delta+\varphi)} \\
& +\frac{C \cdot \cos (\varphi)}{\sin (\alpha+\beta+\delta+\varphi)}
\end{aligned}
$$

$$
F_{h}=-W_{2} \cdot \sin (\alpha)+K_{2} \cdot \sin (\alpha+\delta)
$$

$$
F_{v}=-W_{2} \cdot \cos (\alpha)+K_{2} \cdot \cos (\alpha+\delta)
$$

Faculty of 3mE - Dredging Engineering

Curling/Balling Type

Moments

Delft University of Technology - Offshore \& Dredging Engineering

Equilibrium of Moments

$$
\begin{aligned}
& \left(\frac{\mathbf{W}_{2} \cdot \sin (\delta)+W_{1} \cdot \sin (\alpha+\beta+\delta)-C \cdot \cos (\alpha+\beta+\delta)+A \cdot \cos (\delta)}{\sin (\alpha+\beta+\delta+\varphi)} \cdot \cos (\varphi)-W_{1}\right) \cdot \frac{\lambda_{1} \cdot \mathbf{h}_{\mathbf{i}}}{\sin (\beta)} \\
& =\left(\frac{\mathbf{W}_{2} \cdot \sin (\alpha+\beta+\varphi)+W_{1} \cdot \sin (\varphi)+C \cdot \cos (\varphi)-A \cdot \cos (\alpha+\beta+\varphi)}{\sin (\alpha+\beta+\delta+\varphi)} \cdot \cos (\delta)-W_{2}\right) \cdot \frac{\lambda_{2} \cdot \mathbf{h}_{b}^{\prime}}{\sin (\alpha)}
\end{aligned}
$$

```
\(\mathrm{A} \cdot \mathrm{x}^{2}+\mathrm{B} \cdot \mathrm{x}+\mathrm{C}=\mathbf{0}\)
\(h_{b}^{\prime}=x=\frac{-B-\sqrt{B^{2}-4 \cdot A \cdot C}}{2 \cdot A}\)
\(\mathrm{A}=\frac{\lambda_{2} \cdot \mathbf{p}_{2 \mathrm{~m}} \cdot \sin (\alpha+\beta+\delta+\varphi)-\lambda_{2} \cdot \mathbf{p}_{2 \mathrm{~m}} \cdot \sin (\alpha+\beta+\varphi) \cdot \cos (\delta)+\mathrm{a} \cdot \lambda_{2} \cdot \cos (\alpha+\beta+\varphi) \cdot \cos (\delta)}{\sin (\alpha) \cdot \sin (\alpha)}\)
\(\mathbf{B}=\frac{\lambda_{1} \cdot \mathbf{p}_{2 \mathrm{~m}} \cdot \sin (\delta) \cdot \cos (\varphi)-\lambda_{2} \cdot \mathbf{p}_{1 \mathrm{~m}} \cdot \cos (\delta) \cdot \sin (\varphi)-\mathbf{c} \cdot \lambda_{2} \cdot \cos (\delta) \cdot \cos (\varphi)+\mathbf{a} \cdot \lambda_{1} \cdot \cos (\varphi) \cdot \cos (\delta)}{\sin (\alpha) \cdot \sin (\beta)} \cdot \mathbf{h}_{\mathbf{i}}\)
\[
\mathrm{C}=\frac{\lambda_{1} \cdot \mathbf{p}_{1 \mathrm{~m}} \cdot \sin (\alpha+\beta+\delta) \cdot \cos (\varphi)-\lambda_{1} \cdot \mathbf{p}_{1 \mathrm{~m}} \cdot \sin (\alpha+\beta+\delta+\varphi)-\mathbf{c} \cdot \lambda_{1} \cdot \cos (\alpha+\beta+\delta) \cdot \cos (\varphi)}{\sin (\beta) \cdot \sin (\beta)} \cdot \mathbf{h}_{\mathrm{i}} \cdot \mathbf{h}_{\mathrm{i}}
\]
```


Forces measured by Zijsling

Specific Energy measured by Zijsling

Delft University of Technology - Offshore \& Dredging Engineering

Specific Energy 60 Degrees

Specific Energy 110 Degrees

The specific energy Esp as a function of the compressive strength of rock, for different ratio's between the compressive strength and the tensile strength.

 For a 110 degree blade.Delft University of Technology - Offshore \& Dredging Engineering

Specific Energy

Deep Sea Mining

Questions?

Sources images

1. A model cutter head, source: Delft University of Technology.
2. Off shore platform, source: Castrol (Switzerland) AG
3. Off shore platform, source: http://www.wireropetraining.com
4. Different rock cutterheads, source: unknown.
5. Brittle and ductile rock cutting, source: unknown.
