Dredging Processes

Dr.ir. Sape A. Miedema

6. Rock Cutting

Dredging A Way Of Life

Offshore A Way Of Life

Offshore & Dredging Engineering

Dr.ir. Sape A. Miedema Educational Director

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

Rock Cutting

Delft University of Technology – Offshore & Dredging Engineering

Delft

Rock Cutterheads

ρ

Delft University of Technology Offshore & Dredging Engineering

Brittle versus Ductile

Brittle versus Ductile

elft

Delft University of Technology Offshore & Dredging Engineering

Rock Cutting

Evans Basic

Evans Basic

$$\begin{split} \mathbf{F}_{c} &= \sigma_{T} \cdot \mathbf{h}_{i} \cdot \mathbf{w} \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta)} \\ \mathbf{F}_{ch} &= \mathbf{F}_{c} \\ \mathbf{F}_{cv} &= \mathbf{0} \\ \mathbf{E}_{sp} &= \frac{\mathbf{F}_{ch} \cdot \mathbf{v}_{c}}{\mathbf{h}_{i} \cdot \mathbf{w} \cdot \mathbf{v}_{c}} = \sigma_{T} \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta)} \end{split}$$

lft

Delft University of Technology Offshore & Dredging Engineering

Evans Brittle Horizontal Force Coefficient

Evans Brittle Horizontal Force Coefficient λ_{HT} vs Blade Angle α

100 Phi=0 degrees Phi=5 degrees Brittle Horizontal Force Coefficient λ_{HT} (-) Phi=10 degrees —— Phi=15 degrees Phi=20 degrees 10 Phi=25 degrees ——Phi=30 degrees Phi=35 degrees Phi=40 degrees — Phi=45 degrees 1 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 Blade Angle α (Degrees) © S.A.M.

Evans under an Angle

Evans under an Angle

$$\mathbf{F}_{\mathbf{c}} = \boldsymbol{\sigma}_{\mathrm{T}} \cdot \mathbf{h} \cdot \mathbf{w} \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta + \varepsilon)}$$

$$F_{ch} = F_c \cdot cos(\varepsilon)$$

$$\mathbf{F}_{\mathbf{cv}} = \mathbf{F}_{\mathbf{c}} \cdot \sin(\varepsilon)$$

$$\mathbf{E}_{sp} = \frac{\mathbf{F}_{ch} \cdot \mathbf{v}_{c}}{\mathbf{h}_{i} \cdot \mathbf{w} \cdot \mathbf{v}_{c}} = \boldsymbol{\sigma}_{T} \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(\alpha + \delta + \varepsilon)} \cdot \cos(\varepsilon)$$

Evans Pick Point

Evans Pick Point

$$\mathbf{F}_{\mathbf{c}} = \boldsymbol{\sigma}_{\mathrm{T}} \cdot \mathbf{h} \cdot \mathbf{w} \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(2 \cdot \alpha + \delta)}$$

$$\mathbf{F_{ch}} = \mathbf{F_c} \cdot \mathbf{cos}(\alpha)$$

$$\mathbf{F}_{\mathbf{cv}} = \mathbf{F}_{\mathbf{c}} \cdot \mathbf{sin}(\alpha)$$

$$E_{sp} = \frac{F_{ch} \cdot v_{c}}{h_{i} \cdot w \cdot v_{c}} = \sigma_{T} \cdot \frac{2 \cdot \sin(\alpha + \delta)}{1 - \sin(2 \cdot \alpha + \delta)} \cdot \cos(\alpha)$$

Nishimatsu

FUDDEIft Delft University of Technology Offshore & Dredging Engineering

Nishimatsu

$$F_{h} = \frac{1}{\left(n+1\right)} \cdot \frac{2 \cdot c \cdot h_{i} \cdot w \cdot \cos(\phi) \cdot \sin(\alpha + \delta)}{1 + \cos(\alpha + \delta + \phi)} = \frac{1}{\left(n+1\right)} \cdot \lambda_{HF} \cdot c \cdot h_{i} \cdot w$$

$$F_{\nu} = \frac{1}{\left(n+1\right)} \cdot \frac{2 \cdot c \cdot h_{i} \cdot w \cdot \cos(\phi) \cdot \cos(\alpha + \delta)}{1 + \cos(\alpha + \delta + \phi)} = \frac{1}{\left(n+1\right)} \cdot \lambda_{VF} \cdot c \cdot h_{i} \cdot w$$

lft

Delft University of Technology Offshore & Dredging Engineering

The Ductile Horizontal Coefficient

Ductile Horizontal Force Coefficient λ_{HF} vs Blade Angle α

olft

Delft University of Technology Offshore & Dredging Engineering

The Ductile Vertical Coefficient

Δ

Delft University of Technology Offshore & Dredging Engineering

Definitions

Forces on the Layer Cut

Forces on the Blade

v_c

 R_2

hb

α

N₁

h

R₁

$$K_2 = \frac{C \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_h = K_2 \cdot \sin(\alpha + \delta)$$

$$F_{\nu} = K_2 \cdot \cos(\alpha + \delta)$$

Mohr Circle

Δ

Delft University of Technology Offshore & Dredging Engineering

Brittle Cutting

Tensile Failure

lft

Delft University of Technology Offshore & Dredging Engineering

Transition Tensile Failure – Shear Failure

Transition Tensile Failure – Shear Failure

olft

Delft University of Technology Offshore & Dredging Engineering

The Brittle Horizontal Coefficients

Brittle Horizontal Force Coefficient λ_{HT} vs Blade Angle α

lft

Delft University of Technology Offshore & Dredging Engineering

The Brittle Vertical Coefficients

Hyperbaric Rock Cutting

Measurements in Carthage Marble by Rafatian

Measurements in Indiana Limestone by Rafatian

Measurements of Kaitkai & Lei

Forces on the Blade

Resulting Equations

$$K_{2} = \frac{W_{2} \cdot \sin(\alpha + \beta + \varphi) + W_{1} \cdot \sin(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$\frac{C \cdot \cos(\varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_h = -W_2 \cdot \sin(\alpha) + K_2 \cdot \sin(\alpha + \delta)$$

$$F_{\nu} = -W_2 \cdot \cos(\alpha) + K_2 \cdot \cos(\alpha + \delta)$$

Faculty of 3mE - Dredging Engineering

ft

Delft University of Technology Offshore & Dredging Engineering

Curling/Balling Type

Equilibrium of Moments

$$\begin{split} &\left(\frac{W_2 \cdot \sin(\delta) + W_1 \cdot \sin(\alpha + \beta + \delta) - C \cdot \cos(\alpha + \beta + \delta) + A \cdot \cos(\delta)}{\sin(\alpha + \beta + \delta + \phi)} \cdot \cos(\phi) - W_1\right) \cdot \frac{\lambda_1 \cdot h_i}{\sin(\beta)} \\ &= \left(\frac{W_2 \cdot \sin(\alpha + \beta + \phi) + W_1 \cdot \sin(\phi) + C \cdot \cos(\phi) - A \cdot \cos(\alpha + \beta + \phi)}{\sin(\alpha + \beta + \delta + \phi)} \cdot \cos(\delta) - W_2\right) \cdot \frac{\lambda_2 \cdot h_b}{\sin(\alpha)} \\ &A \cdot x^2 + B \cdot x + C = 0 \\ &h_b^{'} = x = \frac{-B - \sqrt{B^2 - 4 \cdot A \cdot C}}{2 \cdot A} \\ &A = \frac{\lambda_2 \cdot p_{2m} \cdot \sin(\alpha + \beta + \delta + \phi) - \lambda_2 \cdot p_{2m} \cdot \sin(\alpha + \beta + \phi) \cdot \cos(\delta) + a \cdot \lambda_2 \cdot \cos(\alpha + \beta + \phi) \cdot \cos(\delta)}{\sin(\alpha) \cdot \sin(\alpha)} \\ &B = \frac{\lambda_1 \cdot p_{2m} \cdot \sin(\delta) \cdot \cos(\phi) - \lambda_2 \cdot p_{1m} \cdot \cos(\delta) \cdot \sin(\phi) - c \cdot \lambda_2 \cdot \cos(\delta) \cdot \cos(\phi) + a \cdot \lambda_1 \cdot \cos(\phi) \cdot \cos(\delta)}{\sin(\alpha) \cdot \sin(\beta)} \cdot h_i \\ &C = \frac{\lambda_1 \cdot p_{1m} \cdot \sin(\alpha + \beta + \delta) \cdot \cos(\phi) - \lambda_1 \cdot p_{1m} \cdot \sin(\alpha + \beta + \delta + \phi) - c \cdot \lambda_1 \cdot \cos(\alpha + \beta + \delta) \cdot \cos(\phi)}{\sin(\beta)} \cdot h_i \cdot h_i \end{split}$$

Delft University of Technology – Offshore & Dredging Engineering

⊳lft

Forces measured by Zijsling

olft

Delft University of Technology Offshore & Dredging Engineering **Specific Energy measured by Zijsling**

Delft

Delft University of Technology Offshore & Dredging Engineering

The specific energy Esp as a function of the compressive strength of rock, for different ratio's between the compressive strength and the tensile strength. For a 60 degree blade.

Specific Energy 110 Degrees

for different ratio's between the compressive strength and the tensile strength.

For a 110 degree blade.

Specific Energy

Deep Sea Mining

-a-

-b-

Questions?

Sources images

- 1. A model cutter head, source: Delft University of Technology.
- 2. Off shore platform, source: Castrol (Switzerland) AG
- 3. Off shore platform, source: http://www.wireropetraining.com
- 4. Different rock cutterheads, source: unknown.
- 5. Brittle and ductile rock cutting, source: unknown.

