Hydrological Measurements

Prof. Wim Bastiaanssen

6. Modelling Evaporation

Modelling Evaporation

Prof. Wim Bastiaanssen

1

ET for hydrological studies

Source unknown

TUDelft

2

"actual" ET is unpredictable

EB can 'see' impacts on ET caused by:

- water shortage
- disease
- crop variety
- planting density
- cropping dates
- salinity
- management

3

ET for environmental studies

Annual evap Year 2000

4

For solving international conflicts

Source unknown

5

For verification of water use

Avg ETa per plot mm 501 - 750 751 - 900 901 - 1,050

ET is calculated as a "residual" of the energy balance

February 28, 2013

Temperature is a function of ET

TUDelft

8

Surface temperature is a reflection of soil moisture

Latent heat of vaporization

TABLE 1

Conversion factors for evapotranspiration

	depth	volume per u	nit area	energy per unit area ُ
	mm day ^{.1}	m³ ha⁻¹ day⁻¹	I s ⁻¹ ha ⁻¹	MJ m ⁻² day ⁻¹
1 mm day ⁻¹	1	10	0.116	2.45
1 m³ ha⁻¹ day⁻¹	0.1	1	0.012	0.245
1 l s ⁻¹ ha ⁻¹	8.640	86.40	1	21.17
1 MJ m ⁻² day ⁻¹	0.408	4.082	0.047	1

^{*} For water with a density of 1 000 kg m⁻³ and at 20°C.

EXAMPLE 1 Converting evaporation from one unit to another

On a summer day, net solar energy received at a lake reaches 15 MJ per square metre per day. If 80% of the energy is used to vaporize water, how large could the depth of evaporation be?

From Table 1:	1 MJ m ⁻² day ⁻¹ =	0.408	mm day ⁻¹				
Therefore:	$0.8 \times 15 \text{ MJ m}^{-2} \text{ day}^{-1} = 0.8 \times 15 \times 0.408 \text{ mm d}^{-1} =$	4.9	mm day ⁻¹				
The evaporation rate could	d be 4.9 mm/dav						

Daily energy balance

FIGURE 5

Schematic presentation of the diurnal variation of the components of the energy balance above a well-watered transpiring surface on a cloudless day

Source unknown

11

Global Energy Flows W m⁻²

February 28, 2013

TUDelft

Planck equation, details

Planck's equation (the spectral curves shown)

$$L_{\lambda} = \frac{2hc^2}{\lambda^5 (e^x - 1)}$$
, where $x = \frac{hc}{k\lambda T}$

Stefan-Boltzmann equation

$$E = \pi \int_{\alpha}^{\infty} L_{\lambda} d\lambda = \sigma T^4$$

Wien's displacement equation

$$\lambda_{\max}(\mu m) = \frac{2897}{T}$$

- c speed of light
- *h* Planck's constant
- *k* Boltzmann's constant
- σ Stefan-Boltzmann constant 5.67×10⁻⁸Wm⁻²K⁻⁴
- L_{λ} Spectral radiance

 $3.00 \times 10^{8} \text{ ms}^{-1}$ $6.63 \times 10^{-34} \text{Js}$ $1.38 \times 10^{-23} \text{JK}^{-1}$ $5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}$ $\text{Wm}^{-2} \text{m}^{-1} \text{sr}^{-1}$

Surface Radiation Balance

February 28, 2013

Net longwave radiation (1)

$$R_{nl} = \sigma \left[\frac{T_{max,K}^{4} + T_{min,K}^{4}}{2} \right] \left(0.34 - 0.14 \sqrt{e_a} \right) \left(1.35 \frac{R_s}{R_{so}} - 0.35 \right)$$
(39)

where
$$R_{nl}$$
 net outgoing longwave radiation [MJ m⁻² day⁻¹],
 σ Stefan-Boltzmann constant [4.903 10⁻⁹ MJ K⁻⁴ m⁻² day⁻¹],
 $T_{max,K}$ maximum absolute temperature during the 24-hour period [K = °C + 273.16],
 $T_{min,K}$ minimum absolute temperature during the 24-hour period [K = °C + 273.16],
 e_a actual vapour pressure [kPa],
 R_s/R_{so} relative shortwave radiation (limited to \leq 1.0),
 R_s measured or calculated (Equation 35) solar radiation [MJ m⁻² day⁻¹],
 R_{so} calculated (Equation 36 or 37) clear-sky radiation [MJ m⁻² day⁻¹].

Net longwave radiation (2)

EXAMPLE 11 Determination of net longwave radiation

In Rio de Janeiro (Brazil) at a latitude of 22°54'S (= -22.70°), 220 hours of bright sunshine, a mean monthly daily maximum and minimum air temperature of 25.1 and 19.1°C and a vapour pressure of 2.1 kPa were recorded in May. Determine the net longwave radiation.

From Example 10:	R _s =	14.5	MJ m ⁻² day ⁻¹			
From Eq. 36:	R _{SO} = 0.75 R _a = 0.75 . 25.1 =	18.8	MJ m ⁻² day ⁻¹			
From Table 2.8 or for:	σ =	4.903 10 ⁻⁹	MJ K ⁻⁴ m ⁻² day ⁻¹			
Then:	$T_{max} = 25.1^{\circ}C =$	298.3	K			
and:	$\sigma T_{max K4} =$	38.8	MJ m⁻² day⁻¹			
and:	T _{min} = 19.1°C =	292.3	К			
and:	$\sigma T_{min K} 4 = 35.8 \text{ MJ m}^2 \text{ day}^1$	35.8	MJ m ⁻² day ⁻¹			
and:	e _a =	2.1	kPa			
and:	0.34 - 0.14 √e _{a =}	0.14	-			
and:	R _s /R _{so} = (14.5)/(18.8)	0.77	-			
-	1.35(0.77)-0.35 =	0.69	-			
From Eq. 39:	R _{nl} = [(38.7 + 35.7)/2] (0.14) (0.69) =	3.5	MJ m ⁻² day ⁻¹			
From Eq. 20:	expressed as equivalent evaporation =					
	0.408 (3.5) =	1.4	mm/day			
The net longwave radiation is $3.5 \mathrm{M}\mathrm{m}^{-2}\mathrm{dav}^{-1}$						

The net longwave radiation is 5.5 MJ m uay

February 28, 2013

Logarithmic wind profile

Effect of buoyancy on turbulent transport

February 28, 2013

Vertical wind profile – neutral conditions

Vertical wind profile – non neutral conditions

$$L = \frac{-\rho_a \cdot c_p \cdot T \cdot u_*^3}{k \cdot g \cdot H}$$

Monin Obukhov Length

$$\psi_{m}\left(\frac{z}{L}\right) = \begin{cases} L < 0: 2 \cdot \ln\left(\frac{1+x}{2}\right) + \ln\left(\frac{1+x^{2}}{2}\right) - 2 \cdot \arctan\left(x\right) + \frac{\pi}{2} \\ L = 0: 0 \\ L > 0: -5 \cdot \frac{z}{L} \end{cases} \qquad \qquad x = 4\sqrt{1 - 16 \cdot \frac{z}{L}} \end{cases}$$

TUDelft

Flux – profile relationships for momentum, heat and vapor

Wind and temperature vertical profiles

$$u_{z2} = u_{z1} + \frac{u_*}{k} \left\{ \ln\left(\frac{z_1}{z_2}\right) - \psi_m\left(\frac{z_1}{L}\right) + \psi_m\left(\frac{z_2}{L}\right) \right\}$$

$$T_{z2} = T_{z1} + \frac{T_*}{k} \left\{ \ln\left(\frac{z_1}{z_2}\right) - \psi_h\left(\frac{z_1}{L}\right) + \psi_h\left(\frac{z_2}{L}\right) \right\}$$

$$\psi_{h}\left(\frac{z}{L}\right) = \begin{cases} L < 0: 2 \cdot \ln\left(\frac{1}{2} + \sqrt{\frac{1}{4} - 4 \cdot \frac{z}{L}}\right) \\ L = 0: 0 \\ L > 0: -5 \cdot \frac{z}{L} \end{cases}$$
23
Delft

23

Heat flux and scalars

February 28, 2013

Sensible Heat Flux (H) written as Ohm's law

$$H = (\rho \times c_p \times dT) / r_{ah}$$

dT = the near surface temperature difference (K).

 r_{ah} = the aerodynamic resistance to heat transport (s/m).

U* =friction velocity [m/s]

Stability correction for buoyancy

26

Transfer equation sensible heat

$H = -\rho c_p u_* T_* = \rho c_p C_h U(T_0 - T_a) = \rho c_p [(T_0 - T_a)/r_{ah}],$

(3)

February 28, 2013

Soil heat flux

Transpiration process

Source unknown

29

Soil evaporation process

Transfer equation for latent heat

$$LE = \lambda \rho_{air} C_E u (q_{satTs} - q_a),$$

where

- ρ_{air} is the density of moist air, kg/m³,
 - C_E is a bulk transfer coefficient for water vapor, dimensionless,

u is wind speed, in m/s,

- *q_{satTs}* is saturated specific humidity at surface temperature, in kg/kg,
 - q_a is specific humidity at observation height, kg/kg.

Slope of the saturated vapor pressure curve

 $E_{sat} (T_0) = e_{sat}(T_a) + SLOPE (T_0 - T_a)$

Penman – Monteith equation

Bio-physical parameters (besides weather parameters)

- Albedo
- Emissivity
- G/R_n
- Surface roughness, r_a
- Stomatal resistance, rs
- LAI, r_s

Jarvis – Stewart model

Canopy resistance model:

 $r_{c} = r_{smin} / LAI \{\phi_{par} \phi_{temp} \phi_{vpd} \phi_{mois}\}$

February 28, 2013

Soil moisture and surface resistance

Reference ET

Source unknown

Penman-Monteith for ET_{ref} (ET₀)

The Penman-Monteith form of the combination equation is:

$$\lambda ET = \frac{\Delta(R_n - G) + \rho_a c_p \frac{(e_s - e_a)}{r_a}}{\Delta + \gamma \left(1 + \frac{r_s}{r_a}\right)}$$
(3)
(3)

37

TUDelft

Aerodynamic resistance

BOX 4

The aerodynamic resistance for a grass reference surface

For a wide range of crops the zero plane displacement height, d [m], and the roughness length governing momentum transfer, z_{om} [m], can be estimated from the crop height h [m] by the following equations:

$$d = 2/3 h$$

 $z_{om} = 0.123 h$

The roughness length governing transfer of heat and vapour, z_{oh} [m], can be approximated by:

Assuming a constant crop height of 0.12 m and a standardized height for wind speed, temperature and humidity at 2 m ($z_m = z_h = 2$ m), the aerodynamic resistance r_a [s m⁻¹] for the grass reference surface becomes (Eq. 4):

$$r_{a} = \frac{\ln\left[\frac{2-2/3(0.12)}{0.123(0.12)}\right]\ln\left[\frac{2-2/3(0.12)}{(0.1)0.123(0.12)}\right]}{(0.41)^{2}u_{2}} = \frac{208}{u_{2}}$$

where u_2 is the wind speed [m s⁻¹] at 2 m.

Potential ET for correction of grass

Crop coefficient

FIGURE 22

The effect of evaporation on K_c . The horizontal line represents K_c when the soil surface is kept continuously wet. The curved line corresponds to K_c when the soil surface is kept dry but the crop receives sufficient water to sustain full transpiration

TUDelft

40