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Recap of shockwave theory

• Queuing at signalized intersection
• Upstream traffic demand equals q1 (region 1)
• Initial conditions are free-flow (k1,q1) for all x until t=-tr
• Assume Greenshields simplified fundamental diagram

( )
 

= −  
 

0
j

kq k u k 1
k

kkc kj

q

qc

Free speed
Jam density

= j
c

k
k

2



4Lecture 5: characeteristics and Moving Bottleneck | 49

Queuing at signalized intersection (2)
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Characteristics?

• Characteristic: line in x-t plane with constant properties
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Method of Characteristics (MoC)

• Approach to solve traffic evolution analytically
• Construct characteristics / characteristic curves:
lines in the xt-plane with constant density (and 
speed, and flow)

• Conditions known at boundaries, so we know them 
along the characterstics as well

• Enough characteristics =>
determine the traffic state everywhere



7Lecture 5: characeteristics and Moving Bottleneck | 49

Method of characteristics - recepy

Characteristics are lines in the (x,t)-plane:
1. Slope of characteristic depends on the condition
2. Density is constant along characteristics
3. Combine 2+3: characteristics are straight lines from

boundary

• Intersection of characteristics: shockwave! 
(use shockwave analysis to solve problem)
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Speed of characteristic

• In principle a shockwave with two sides (almost) the 
same condition
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Question: where does the condition 
go?
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Two speeds
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Use: forward or backward analysis

Presentator
Presentatienotities
Two ways: all info forward, or look-up
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Real-life example
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APPLICATIONS OF MOC
Acceleration fans and the formation of shockwaves

14
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Application – acceleration fans
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Application – acceleration fans (2)
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Application – acceleration fans (3)
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Application – acceleration fan (4)

• Consider shock 
• Approx. by ‘smooth shock’
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Question

• There is a queue upstram of a traffic light
• The traffic light turns green
• What is the traffic state at the stop line
• Use this fundamental diagram:
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• At t=0 “all” densities at stop line
• So => which density has a characteristic speed of 0
• Characteristic speed = derivative of q(k)
• => at d/dk(q)=0 => capacity
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Application – acceleration fan (5)
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Link to practice – green wave

• After a red traffic light, keep the 
platoon of vehicles together and give 
them green throughout a section

• Avoid platoon dispersion
• Advise speed

Groene golf by rijkswaterstaat 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=sI3VwcYHdxXVXM&tbnid=yKDtCQC-cZVVgM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.rijkswaterstaat.nl%2Fzakelijk%2Fverkeersmanagement%2Fgroene_golf_team%2F&ei=JAgCU8K_Fu6y0AWs-IDIAw&bvm=bv.61535280,d.d2k&psig=AFQjCNHmEsVyJ8reF2E66uMaKnP556MtnQ&ust=1392728463343676
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Application – deceleration fans
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Application – deceleration fans (2)
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Formation of shocks
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Formation of shocks (2)
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In practice: 

• Problem?

Photo by Wikipedia 

http://nl.wikipedia.org/wiki/Autosnelweg
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Application of kinematic wave model

• Queuing at signalized intersection
• Upstream traffic demand equals q1 (region 1)
• Initial conditions are free-flow (k1,q1) for all x until t=-tr
• Assume Greenshields simplified fundamental diagram
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Queuing at signalized intersection

• Assume that at t = -tr a traffic light changes from green to red
• As a result, a queue will start to build up starting at the stop-line 

at x = 0 (region 2)
• Speed at which queue moves upstream can be determined using 

shockwave analysis

• Downstream of stopping line, free flow conditions (region 3)
• Two other shockwaves between:

• Region 1 and 2
• Region 1 and 3
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Queuing at signalized intersection (2)
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Queuing at signalized intersection (3)

• At t = 0 red-phase ends. What will happen?
• Shockwave theory predicts that vehicles will drive away from the 

queue at capacity flow
• What will the kinematic wave model predict?
• Approximate shock at stop-line x=0 by ‘smooth shock’ yields 

description of acceleration fan
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Queuing at signalized intersection (4)

Shockwave S14

1) What is the flow  
at the stop-line?

2) What is the slope 
of line B-C
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Queuing at signalized intersection (5)

• How to determine dynamics of shock S14?
• Consider any point (x,t) in the acceleration region 4
• This point lies of the characteristic emanating from the origin 

(0,0) thus having slope

• For Greenshields function we have

• Which enables us to determine the density at (x,t), and thus 
shockwave speed:

• Can be solved analytically (use Maple?) (see reader)
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Queuing at signalized intersection (8)
• Assuming that red-

phase occurs again 
during the 
acceleration phase

• Congestion region 
increases (queue 
grows as time goes 
by)
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Queuing at signalized intersection (9)
• Example 

trajectories 
for signalized 
intersection
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Queuing at signalized intersection (6)

• Thus for region 1:

• And for region 2:

• The speed of the shock S14 is thus
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Queuing at signalized intersection (7)

• Shockwave trajectory xCE(t) starts at (xC,tC) and its slope is given 
by dxCE/dt = ω14

• The shock S14 can thus be determined by solving the ODE

subject to

• Can be solved analytically (use Maple?) (see reader)
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Queuing at signalized intersection (8)

• How to determine point C?
• Point C represents the intersection of the shockwave S12 and the 

‘slowest’ characteristic emanating from x = 0 (acceleration fan)
• This is the shockwave traveling at speed 

• Point (xC,tC) is found easily (see reader)

= −j 0c(k ) u
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Why numerical solutions are needed

• Analytical solution to kinematic wave model is exact
• Only applicable in relatively simple situations, e.g. with respect to 

upstream traffic demand, off-ramps and on-ramps, etc.
• What to do when demand on main-road and on-ramps is 

changing dynamically? Use numerical approximations!

• Practical applications, e.g. use for network simulation 
(e.g. DSMART by Frank Zuurbier)
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Basic principles

• Various approaches exist to solve kinematic wave 
model

• Simplest: 
Divide roadway into cells i, length dx

• Divide time into steps with length dt

xi-1/2 xi+1/2

ki

qi+1/2qi-1/2

interface at xi+1/2
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Assumptions

• Cells are homogeneous

• Within a time step (dt) , traffic flow is stationary

• Question: express ki+1,j = f(ki,j,qi-1/2,qi+1/2,dt,dx)

xi-1/2 xi+1/2

ki

qi+1/2qi-1/2



43Lecture 5: characeteristics and Moving Bottleneck | 49

Basic principles (2)

• For the slides: this is the answer…

• But how to get to:

• free-flow conditions:

+ + + + +=i 1 / 2,j i,j i 1,j i,j 1 i 1,j 1q q(k ,k ,k ,k )

( )+ = =i 1 / 2,j i,j i, j i, jq k u Q k
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What if congested?

• What determines the flow from A to B?
• A – state in cell A
• B – state in cell B
• C - capactity

ck

x

qA,B

Traffic Light by OCAL

https://www.google.com/search?sa=G&q=traffic+light+clip+art&tbm=isch&imgil=eAr1I6_Fxe_mAM%253A%253Bhttps%253A%252F%252Fencrypted-tbn1.gstatic.com%252Fimages%253Fq%253Dtbn%253AANd9GcSZwSrrHJ5NEqhQ2LIsqyt_0tbzXCdVFFMn01aiTx2FsruUuDFt%253B510%253B600%253Bf2EtIIE7dUGnOM%253Bhttp%25253A%25252F%25252Fwww.clker.com%25252Fclipart-2839.html&source=iu&tbs=simg:CAESZxplCxCo1NgEGgQIAAgDDAsQsIynCBo8CjoIARIUwQa4B8YG6AbhBvkG5AbHBvgGngcaILebnB_1Zmk4F2Zh58cmM1XS8AIJLlIiVarhFXlxZU0i_1DAsQjq7-CBoKCggIARIEjGiyrQw&usg=__cEwyjABctX4FarVxKPK3DwKU9ug%3D&ei=KQ0CU-uqO83M0AWeh4GACQ&ved=0CC4Q9QEwAA&biw=784&bih=734facrc=_&imgrc=eAr1I6_Fxe_mAM%253A%3Bf2EtIIE7dUGnOM%3Bhttp%253A%252F%252Fwww.clker.com%252Fcliparts%252Fe%252F9%252Ff%252Fd%252F11949849751056341160traffic_light_dan_gerhar_01.svg.hi.png%3Bhttp%253A%252F%252Fwww.clker.com%252Fclipart-2839.html%3B510%3B600
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Combining: Godunov scheme (3)

• Demand of region A and supply of region B

• DL = maximum number of vehicles that can flow out region L 
(bounded by the capacity of the road)

• SR = maximum number of vehicles that can flow into region R 
(bounded by road capacity and the space becoming available 
during one time-step)

• Actual flow at x=0 : min(DL,SR)
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Godunov graphically

• Flow based on
Demand & Supply

• => fundamental diagram
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Network: do this for all cells & times

• For all cells i, determine the cell demands for period j

and the cell supplies for period j

• The numerical flow between cell i and i+1 for period j becomes
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Resulting traffic operations

• Movie here
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Example application Godunov



50Lecture 5: characeteristics and Moving Bottleneck | 49

Summary – and learning goals

• Studied : 
• characteristics 
• Cell transmission model

• You can:
• Follow traffic characteristics
• Make traffic predicitons

• Method of characteristics
• +Shock wave theory when needed

• Cell transmission model 
(euqations, interpretation of results)
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