Traffic Flow Theory and Simulation

V.L. Knoop

Lecture 6 Traffic Analysis: Characteristics

Traffic analyses - characteristics

24-3-2014

Recap of shockwave theory

- Queuing at signalized intersection
- Upstream traffic demand equals q₁ (region 1)
- Initial conditions are free-flow (k₁,q₁) for all x until t=-t_r
- Assume Greenshields simplified fundamental diagram

Queuing at signalized intersection (2)

Characteristics?

• Characteristic: line in x-t plane with constant properties

Trajectories

Method of Characteristics (MoC)

• Approach to solve traffic evolution analytically

- Construct *characteristics / characteristic curves*: lines in the xt-plane with constant density (and speed, and flow)
- Conditions known at boundaries, so we know them along the characterstics as well
- Enough characteristics => determine the traffic state everywhere

Method of characteristics - recepy

Characteristics are lines in the (x,t)-plane:

- 1. Slope of characteristic depends on the condition
- 2. Density is **constant** along characteristics
- 3. Combine 2+3: characteristics are straight lines from boundary
- Intersection of characteristics: shockwave! (use shockwave analysis to solve problem)

Speed of characteristic

 In principle a shockwave with two sides (almost) the same condition

Density k (veh/km)

Use: forward or backward analysis

Trajectories

Real-life example

Acceleration fans and the formation of shockwaves

APPLICATIONS OF MOC

Application – acceleration fans (3)

Question

- There is a queue upstram of a traffic light
- The traffic light turns green
- What is the traffic state at the stop line
- Use this fundamental diagram:

q

Application – acceleration fan (5)

Link to practice – green wave

- After a red traffic light, keep the platoon of vehicles together and give them green throughout a section
- Avoid platoon dispersion
- Advise speed

Groene golf by rijkswaterstaat

Formation of shocks (2)

In practice:

• Problem?

Photo by Wikipedia

Application of kinematic wave model

- Queuing at signalized intersection
- Upstream traffic demand equals q₁ (region 1)
- Initial conditions are free-flow (k₁,q₁) for all x until t=-t_r
- Assume Greenshields simplified fundamental diagram

Queuing at signalized intersection

- Assume that at $t = -t_r$ a traffic light changes from green to red
- As a result, a queue will start to build up starting at the stop-line at x = 0 (region 2)
- Speed at which queue moves upstream can be determined using shockwave analysis
- Downstream of stopping line, free flow conditions (region 3)
- Two other shockwaves between:
 - Region 1 and 2
 - Region 1 and 3

Queuing at signalized intersection (2)

Queuing at signalized intersection (3)

- At t = 0 red-phase ends. What will happen?
- Shockwave theory predicts that vehicles will drive away from the queue at capacity flow
- What will the kinematic wave model predict?
- Approximate shock at stop-line x=0 by 'smooth shock' yields description of acceleration fan

Queuing at signalized intersection (4)

Queuing at signalized intersection (5)

- How to determine dynamics of shock S₁₄?
- Consider any point (x,t) in the acceleration region 4
- This point lies of the characteristic emanating from the origin (0,0) thus having slope
- For Greenshields function we have
- Which enables us to determine the density at (x,t), and thus shockwave speed:
- Can be solved analytically (use Maple?) (see reader)

Queuing at signalized intersection (8)

- Assuming that redphase occurs again during the acceleration phase
- Congestion region increases (queue grows as time goes by)

Queuing at signalized intersection (9)

 Example trajectories for signalized intersection

Queuing at signalized intersection (6)

- Thus for region 1:
- And for region 2:

• The speed of the shock S₁₄ is thus

Queuing at signalized intersection (7)

- Shockwave trajectory $x_{CE}(t)$ starts at (x_C, t_C) and its slope is given by $dx_{CE}/dt = \omega_{14}$
- The shock S₁₄ can thus be determined by solving the ODE

subject to

• Can be solved analytically (use Maple?) (see reader)

Queuing at signalized intersection (8)

- How to determine point C?
- Point C represents the intersection of the shockwave S_{12} and the 'slowest' characteristic emanating from x = 0 (acceleration fan)
- This is the shockwave traveling at speed
- Point (x_c,t_c) is found easily (see reader)

Numerical solution approaches Godunov scheme

24-3-2014

Why numerical solutions are needed

- Analytical solution to kinematic wave model is exact
- Only applicable in relatively simple situations, e.g. with respect to upstream traffic demand, off-ramps and on-ramps, etc.
- What to do when demand on main-road and on-ramps is changing dynamically? Use numerical approximations!
- Practical applications, e.g. use for network simulation (e.g. DSMART by Frank Zuurbier)

Basic principles

- Various approaches exist to solve kinematic wave model
- Simplest:
 - Divide roadway into cells i, length dx
 - Divide time into steps with length dt

Assumptions

- Cells are homogeneous
- Within a time step (dt), traffic flow is stationary
- Question: express $k_{i+1,j} = f(k_{i'}j,q_{i-1/2},q_{i+1/2},dt,dx)$

Basic principles (2)

• For the slides: this is the answer...

$$\|\mathbf{k}_{\mathbf{i}_{i}\mathbf{j}+1} := \|\mathbf{k}_{\mathbf{i}_{i}\mathbf{j}+1} \cdot \| \cdot \frac{d \mathbb{K}}{d \mathbb{K}} \left(\mathbb{Q}_{\mathbf{i}-1/2,\mathbf{i}\mathbf{j}} \cdot \| \cdot \mathbb{Q}_{\mathbf{i}+1/2,\mathbf{i}\mathbf{j}} \right)$$

• But how to get to:

• free-flow conditions:

What if congested?

- What determines the flow from A to B?
 - A state in cell A
 - B state in cell B
 - C capactity

Combining: Godunov scheme (3)

Demand of region A and supply of region B

- D_L = maximum number of vehicles that can flow out region L (bounded by the capacity of the road)
- S_R = maximum number of vehicles that can flow into region R (bounded by road capacity and the space becoming available during one time-step)

Actual flow at x=0 : min(D_L,S_R)

Godunov graphically

=> fundamental diagram

Network: do this for all cells & times

• For all cells i, determine the cell demands for period j

and the cell supplies for period j

• The numerical flow between cell i and i+1 for period j becomes

Resulting traffic operations

• <u>Movie</u>

Example application Godunov

Summary – and learning goals

- Studied :
 - characteristics
 - Cell transmission model
- You can:
 - Follow traffic characteristics
 - Make traffic predicitons
 - Method of characteristics
 - +Shock wave theory when needed
 - Cell transmission model (euqations, interpretation of results)

