Pumping stations and water transport

Pumps and pumping stations ct5550

February 8, 2008

Delft University of Technology

Introduction

- Basic function is energy feeding
- Actually lifting water or pressurising water
- Compensating energy losses:
 - Energy loss due to drive mechanism
 - Friction losses in pipes
 - Deceleration losses
- Parameters: volume flow and pressure
 - Q=f(h)

Pumping ground water

February 8, 2008

Treatment

February 8, 2008

Transport through pipes

TUDelft

5

Controlling rain water wash out

6

Classification of pumps

	High pressure, low flow	High pressure, high flowDrinking waterSewerage transport
Pressure	Low pressure, low flow •Dosing pumps •Drainage pumps	Low pressure, high flow •Surface water intake •Rain water discharge

volume flow Q

7

February 8, 2008

Pump type: 'Open' pump

- Lift water between open surfaces
 - Archimedean Screw pumps
 - Polder pumps

Pump type: 'Closed' pump

- Water is pressurised in a closed vessel
- Energy is converted to pressure and velocity

9

Pump characteristics

- Q-H curve
- Efficiency curve
- Power curve
- NPSH characteristic

Q-H curve

Performance/efficiency curve

Net Positive Suction Head

February 8, 2008

Effect of cavitation

- Vapour bells as result of negative pressures
- Bells are pressurised in the high pressure zones
- Bells act like small grains before dissolving

Pump types: Archimedean screws

Values of k

Screw	d/D	a = 22°	
pressure		S=1D	S=1,2D
side	0.3	0.331	0.336
	0.4	0.350	0.378
suction side	0.5	0.345	0.380
$O = k^* n^* D^3$	0.6	0.315	0.351

Pump type: displacement pumps

Steep pump curve

displacement pump

Volume flow

17

Pump types: Impellor pumps

Pump types: impellor pumps

Centrifugal blade

Mixed flow blade

Propellor pump

Propellor blade

19

Examples of impellor pumps

February 8, 2008

Example of blade

22

″uDelft

Pipe characteristics

• Energy loss in a pipe is mainly friction loss

$$\Delta H = \xi \frac{u^2}{2g}; \text{ friction: } \xi = \frac{\lambda L}{D}; \frac{0,02 \cdot 100}{0,1} = 20$$
$$\text{local: } \xi = 0, 1 \rightarrow 3$$

• Pressure drop is quadratic proportional to velocity (volume flow): $\Delta H = f(Q^2)$

Pipe characteristic

Pipe characteristic

Working point

Demand curve

Working point

Flow control

- Traditional pumps work on one speed
- Flow control is possible by throttling valves (increasing pipe resistance)
- Consequence is higher pressure
 - More leakage
 - Waste of energy
- Variable speed pump

Conventional pump regulation

February 8, 2008

Variable speed pump

Volume flow

Working point with variable speed pump

Pumps in parallel (more flow)

- Pumps work individually
- Flows can be added

Pumps in parallel (more flow)

Pumps in series

- Pumps work individually
- Pressures are added

36

Pumps in series (more pressure)

Design of pumping stations

- Determine pipe/network characteristic
- 'Construct' pump curve
- Design pump schedule
- Network calculation software is inevitable

Pictures of pumping stations and pump lay outs

39

February

Pumping station

February 8, 2008

Energy input

- Electrical
- Fuel motors
- Back up/emergency power

February 8, 2008

February 8, 2008

February 8, 2008

Pump system

February 8, 2008

Operation lay out

February 8, 2008

Pump lay out 'hydraulically smooth'

Attention to details

Vortex suppression

February 8, 2008

