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The Settling Velocity
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Forces on a settling particle
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Standard drag coefficient curve for 

spheres
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The drag coefficient as a function of the 

particle  Reynolds number
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The drag coefficient as a function of the 

particle  Reynolds number
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Laminar flow, d<0.1 mm, according to Stokes.

Transition zone, d>0.1 mm and d<1 mm, according 
to Budryck.

Turbulent flow, d>1 mm, according to Rittinger.

The settling velocity of individual 

particles

With the relative density Rd defined as:
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The settling velocity of individual 

particles
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The settling velocity of individual 

particles using the shape factor
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The Reynolds number as a function of 

the particle diameter
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The hindered settling power according to 

several researchers
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Erosion/Scour
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The Amsterdam
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The loading cycle of a TSHD
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The loading part of the cycle of a TSHD
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Phase 8 of the loading cycle
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Erosion/scour starts to occur.
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The equilibrium of forces on a particle

Camp approach
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History
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The original Shields curve
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A modified Shields diagram
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The original Shields diagram
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Data points
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The Hjulstrom curve
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The Hjulstrom diagram
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The Sundborg-Hjulstrom diagram
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Shields Diagram with Criterion for 

Ripples (Chabert and Chauvin (1963))
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Classification of flow layers
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Classification of flow layers
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•Viscous sublayer: a thin layer just above the bottom. In this
layer there is almost no turbulence. Measurement shows that
the viscous shear stress in this layer is constant. The flow is
laminar. Above this layer the flow is turbulent.
•Transition layer: also called buffer layer. viscosity and
turbulence are equally important.
•Turbulent logarithmic layer: viscous shear stress can be
neglected in this layer. Based on measurement, it is assumed
that the turbulent shear stress is constant and equal to bottom
shear stress. It is in this layer where Prandtl introduced the
mixing length concept and derived the logarithmic velocity
profile.
•Turbulent outer layer: velocities are almost constant because
of the presence of large eddies which produce strong mixing of
the flow.
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Friction velocity
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The bottom shear stress is often represented by friction velocity, 
defined by
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The term friction velocity comes from the fact that 

has the same unit as velocity and it has something to do with 
friction force.
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Engineering classification
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Engineering classification
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•Hydraulically smooth flow for

Bed roughness is much smaller than the thickness of viscous
sublayer. Therefore, the bed roughness will not affect the velocity
distribution

5
ku s ≤≤≤≤
νννν
∗∗∗∗

•Hydraulically rough flow for

Bed roughness is so large that it produces eddies close to the 
bottom. A viscous sublayer does not exist and the flow velocity is 
not dependent on viscosity.

70
ku s ≥≥≥≥
νννν
∗∗∗∗

•Hydraulically transitional flow for

The velocity distribution is affected by bed roughness and 
viscosity. 
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The velocity distribution
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The velocity distribution
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Wiberg & Smith (1987)
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Wiberg & Smith (1987)
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The Physics
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The equilibrium equations for sliding and rolling
The velocity distribution

The transition smooth-rough
The drag coefficient CD
The lift coefficient CL

The friction coefficient/angle of internal friction
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The velocity profile near the wall
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The transition smooth-rough

Faculty of 3mE – Chair of Dredging Engineering

1 10 100 1000 10000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

The offset of the logaritmic velocity profile

k+

y0
/k

s

Data of Nikuradse (1933) Theoretical bed Smooth Asymptote Rough Asymptote

Rough

Smooth

Transition

© S.A.M



The transition rough-smooth
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The angle of repose for granular material
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Drag induced sliding & rolling
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Thye Drag Coefficient of Spheres
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The drag coefficient CD
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The Drag Coefficient for Natural 

Sediments
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Drag induced sliding & rolling
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Drag & Lift induced sliding & rolling
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The lift coefficient CL
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Drag & Lift induced sliding & rolling
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Drag & Lift induced sliding & rolling
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Turbulence
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Drag, Lift & Turbulence induced sliding & 

rolling
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Initiation of motion for sliding & rolling
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Sensitivity Analysis Shields

Curve
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Different Angles of Internal Friction
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Different Levels of Turbulence
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Sand Standard & Spheres with 2 CL’s
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Resulting Curves
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Sensitivities
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The resulting curves
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Sliding versus rolling for spheres
Different protrusion levels for spheres

Different protrusion levels for sand
The Shields-Parker diagram
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Exposure Levels - Protrusion Levels
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Exposure Levels Sliding
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Exposure Levels Rolling
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Exposure Levels Both (Spheres)
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Exposure Levels Both, Bonneville

Parameter
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Different protrusion levels (sand)
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Exposure Levels Experiments
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Stages of Entrainment
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Laminar Main Flow
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Resulting Curves
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The Shields-Parker diagram
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Application of the model
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The governing equations
The friction coefficient
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Application to scour in a TSHD
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First determine the friction velocity and the friction coefficient:

Second determine the Shields parameter for the grain diameter:

Third, determine the average velocity above the bed given a 
grain diameter:

or, determine the grain diameter given an average velocity:
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The friction coefficient
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The Shields-Parker diagram
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Hopper Sedimentation, verification
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Questions?
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Sources images
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1. A model cutter head, source: Delft University of Technology.
2. Off shore platform, source: Castrol (Switzerland) AG
3. Off shore platform, source: http://www.wireropetraining.com
4. The Amsterdam, source: IHC Merwede.


