Offshore Hydromechanics Module 1

Dr. ir. Pepijn de Jong

7. Waves

Topics of Module 1

- Problems of interest
- Hydrostatics
- Floating stability
- Constant potential flows
- Constant real flows
- Waves

Chapter 1 Chapter 2 Chapter 2 Chapter 3 Chapter 4 **Chapter 5**

Learning Objectives

Chapter 5

- To apply linear wave theory and to derive and apply potential flow theory to linear waves.
- To describe wave shoaling, reflection and diffraction.
- To describe basic nonlinear corrections to linear wave theory.
- To perform simple statistical analysis to irregular wave trains.
- To apply the concept of wave energy spectra and the relation between the time and the frequency domains.
- To describe wave climatology and wave prediction.

- Sea:
 - Waves driven by local wind field
 - Short crested
 - Irregular
 - Unpredictable
- Swell:
 - Generated by wind (storms) far away
 - More regular (sine-like)
 - Long crested
 - Unidirectional
 - Longer waves

- Deep water waves: short waves
 - (Almost) no influence sea floor

$h/\lambda > 1/2$

- Shallow water waves: long waves
 - Large influence by sea floor

 $h/\lambda < 1/20$

- Wind waves irregular
- Use superposition principle to decompose in regular sine waves
- (compare with Fourier Transform)

Definitions

- ζ wave elevation m
- λ wave length m
- ζ_a wave amplitude m
- *H* wave height *m*
- *h* water depth *m*
- *T* wave period
- ω wave frequency rad/s
- k wave number rad/m

 $H = 2\zeta_a$

 $\omega = \frac{2\pi}{T}$

 $k = \frac{2\pi}{\lambda}$

S

Regular waves Definitions

• Wave speed (or better: phase velocity)

$$c = \frac{\lambda}{T} = \frac{\omega}{k}$$

• Wave profile (dependent on both time and place)

$$\zeta(x,t) = \zeta_a \cos(kx - \omega t)$$

- Due to minus sign before ωt -term: wave travels in positive x-direction
 - In case plus-sign: wave travels in the other direction

Potential theory

- Assumptions:
 - Small wave steepness
 - Ignoring nonlinear terms
 - Linear relation between wave harmonic signals:
 - Displacements
 - Velocities
 - Accelerations
 - Surface displacement
 - (pressures, etc)
 - Wave potential

Potential theory

1. Assume harmonic wave elevation:

 $\zeta = \zeta_a \cdot \cos(kx - \omega t)$

2. Assume harmonic wave potential function:

 $\Phi_w(x, z, t) = P(z) \cdot \sin(kx - \omega t)$

- 3. Use (boundary) conditions to find leading term P(z) (see book):
 - Continuity, Laplace equation
 - Sea bed boundary condition
 - Free surface dynamic boundary condition
 - Free surface kinematic boundary condition

Potential theory

• Resulting wave potential equation:

$$\Phi_w(x, z, t) = \zeta_a \frac{g}{\omega} \cdot \frac{\cosh k(h+z)}{\cosh kh} \cdot \sin(kx - \omega t)$$

• For deep water:
$$h \to \infty$$

$$\Phi_w(x, z, t) = \zeta_a \frac{g}{\omega} \cdot e^{kz} \cdot \sin(kx - \omega t)$$

Potential theory - FS dynamic BC

Pressure at FS equals atmospheric pressure

• Bernoulli equation at FS:

$$\frac{\partial \Phi_w}{\partial t} + \frac{1}{2}(u^2 + v^2 + w^2) + \frac{p_0}{\rho} + g\zeta = 0 \qquad \text{at } z = \zeta$$

• 2D and small wave steepness:

$$\frac{\partial \Phi_{w}}{\partial t} + \frac{p_{\delta}}{\rho} + g\zeta = 0$$
Neglected/ included
in potential

at
$$z = 0$$

Potential theory – FS kinematic BC

Velocity of water particles at FS equals velocity of FS (no leak condition)

• Wave profile:

$$\zeta = \zeta_a \cdot \cos(kx - \omega t) \qquad \Rightarrow \qquad \frac{\partial z}{\partial t} = \frac{\partial \zeta}{\partial t} + \frac{\partial \zeta}{\partial x} \cdot \frac{\partial x}{\partial t} \qquad at \ z = \zeta$$

- Small wave steepness:
 - $\frac{\partial z}{\partial t} = \frac{\partial \zeta}{\partial t} \qquad \text{at } z = \zeta$
- Linearization (small wave steepness):

$$\frac{\partial \Phi_w}{\partial z} = \frac{\partial \zeta}{\partial t} \qquad at \ z = 0$$

Potential theory – FS combined BC

Combined FS BC: Cauchy-Poisson condition

Potential theory – Dispersion relation

- Substitution of wave potential in CP condition yields: $\omega^2 = kg \cdot \tanh kh$
- Deep water: $\omega^{2} = kg$ $\omega = \frac{2\pi}{T}$ $\omega = k\sqrt{gh}$ $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T}$ $\frac{4\pi^{2}}{T^{2}} = \frac{2\pi g}{\lambda} \Rightarrow \lambda = \frac{g}{2\pi}T^{2} \approx 1.56T^{2}$ • Shallow water: $\omega = k\sqrt{gh}$ $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T}$ $\frac{2\pi}{T} = \frac{2\pi}{\lambda}\sqrt{gh} \Rightarrow \lambda = T\sqrt{gh}$

Potential theory – phase velocity

• Using dispersion relation and wave celerity:

$$\omega^2 = kg \cdot \tanh kh$$
 $c = \frac{\lambda}{T} = \frac{\omega}{k}$ \Rightarrow $c = \sqrt{\frac{g}{k} \cdot \tanh kh}$

• Deep water:

$$c = \sqrt{\frac{g}{k}} = \frac{g}{\omega}$$

• Shallow water:

 $c = \sqrt{gh}$ \sqrt{gh} critical velocity

Potential theory – orbital velocity

Potential theory – orbital trajectories

Potential theory – wave pressure

• Use the (linearized) Bernoulli equation

$$\frac{\partial \Phi_w}{\partial t} + \frac{p}{\rho} + gz + \frac{1}{2}(u^2 + w^2) = 0$$

linearized

$$p = -\rho gz + \rho g\zeta_a \cdot \frac{\cosh k(h+z)}{\cosh kh} \cdot \cos(kx - \omega t)$$

• Deep water:

$$p = -\rho g z + \rho g \zeta_a \cdot e^{kz} \cdot \cos(kx - \omega t)$$

$$K = \frac{1}{2}mV^{2} = \int_{-h}^{0} \int_{0}^{\lambda} \frac{1}{2}\rho(u^{2} + w^{2})dxdz = \dots = \frac{1}{4}\rho g\zeta_{a}^{2}\lambda$$

Potential theory – wave energy (potential)

$$P = mgh = \int_{0}^{\lambda} \left(\rho \zeta dx \cdot g \cdot \frac{1}{2} \zeta \right) = \zeta \qquad \frac{1}{2} \zeta$$

Potential theory – wave energy

- Two forms of energy:
 - Kinetic energy (velocity)

$$K = \frac{1}{2}mV^2 = \ldots = \frac{1}{4}\rho g\zeta_a^2 \cdot \lambda$$

• Potential energy (height)

$$P = mgh = \ldots = \frac{1}{4}\rho g\zeta_a^2 \cdot \lambda$$

• Total energy:

$$E = K + P = \frac{1}{2}\rho g \zeta_a^2 = \frac{1}{8}\rho g H^2$$

per unit width

per unit horizontal sea surface

Potential theory – wave energy transport

• Work = **force x distance**

 $dW = [p \cdot 1 \cdot dz] \cdot [u \cdot dt] = p \cdot u \cdot dz \cdot dt$

 Average work per unit time: (over one period T): Power

$$P = \frac{1}{T} \int_{t}^{t+T} \int_{-h}^{0} p \cdot u \cdot dz \cdot dt$$

$$P = \dots = \frac{1}{2} \rho g \zeta_a^2 \cdot \frac{c}{2} \cdot \left(1 + \frac{2kh}{\sinh 2kh} \right)$$

Potential theory – group ve

• Thus power:

TUDelft

$$P = \dots = \frac{1}{2} \rho g \zeta_a^2 \cdot \frac{c}{2} \cdot \left(1 + \frac{2k\hbar}{\sinh 2}\right)$$

• Also Power = **energy x velocity**:

$$P = E \cdot c_g$$

• Now the group velocity becomes:

$$c_g = \frac{c}{2} \cdot \left(1 + \frac{2kh}{\sinh 2kh}\right)$$

$$c_g = \frac{c}{2}$$
 deep water c_g

Regular waves Shoaling

- When waves move from deep to shallow water:
 - Wave length decreases for fixed wave period
 - Lower celerity (wave velocity)
- Energy transport needs to remain constant:
 - Wave height increases near shore (higher energy density)

Regular waves Shoaling

 $\lambda = 100$

(b

[1]

Refraction, reflection, diffraction

Refraction

Diffraction

Limits to linear wave theory

- Waves in reality not sinusoidal
 - Use non-linear wave: stokes waves for instance:

• Small wave steepness: no detailed information above z=0

Wave pressure in the splash zone

- Linear wave theory:
 - No information above z = 0
- Solution:
 - Wave profile stretching

Wave superposition

- Basic assumption:
 - Decompose irregular waves into a large number of regular wave components
 - (Fourier transform)

Characterization of irregular sea state

- Period: Average zero up crossing or average crest or trough period
- Significant wave height H_s or $H_{1/3}$
 - The average height of the one-third highest part of the observed waves
- Visually estimated wave height H_{ν} approx. corresponds with significant wave height
- Mean wave height H or $H_{1/1}$

Probability density distributions

 $P(\overline{H} > a) = \int_{a}^{\infty} f(x) \cdot dx$

Wave elevation statistics

• Standard deviation of the water level elevation signal $\zeta(t)$ and significant wave height

Wave height statistics

• In case:

ŤUDelft

- Wave elevation spectrum: narrow banded
- Gaussian distributed
- Then: Rayleigh distributed wave **height** distribution

$$f(x) = \frac{x}{\sigma^2} \cdot e^{-\left(\frac{x}{\sigma\sqrt{2}}\right)^2}$$

• Probability of exceedance

$$p(\zeta > a) = \int_{a}^{\infty} f(x) \cdot dx = \frac{1}{\sigma^2} \int_{a}^{\infty} x \cdot e^{-\left(\frac{x}{\sigma\sqrt{2}}\right)^2} dx = e^{-\frac{a^2}{2\sigma^2}} \qquad \zeta_{a1/3} = 2 \cdot \sigma$$
$$H_{1/3} = 4 \cdot \sigma$$

$$p(H_w > H) = e^{-\frac{1}{2} \left(\frac{2}{\frac{1}{4}H_{1/3}}\right)} = e^{-\frac{1}{2} \left(\frac{2H}{H_{1/3}}\right)^2} = e^{-2\left(\frac{H}{H_{1/3}}\right)^2}$$

Wave height statistics

- Maximum wave height: choose **design criterion**:
 - The wave height that is exceeded once in every 1000 (storm) waves
 - It takes at least 3 hours for 1000 waves to pass by
 - By then storm should weaken
 - (chance of zero gives a design criterion of infinite wave height)

$$p(H_w > H_{max}) = e^{-2\left(\frac{H_{max}}{H_{1/3}}\right)^2} = \frac{1}{1000} \implies -2\left(\frac{H_{max}}{H_{1/3}}\right)^2 = \ln\frac{1}{1000}$$
$$\Rightarrow \frac{H_{max}}{H_{1/3}} = \sqrt{-1/2 \cdot \ln\frac{1}{1000}} \implies H_{max} = 1.86 \cdot H_{1/3}$$

Wave energy density spectrum

• Wave elevation in long-crested irregular sea:

$$\zeta(t) = \sum_{n=1}^{N} \zeta_{a_n} \cos(k_n x - \omega_n t + \varepsilon_n)$$

- 1. Apply Fourier transform to time trace of wave elevation
- 2. Use dispersion relation: relation between k and $\boldsymbol{\omega}$
- 3. Discard phase angle
 - (only statistical representation, not exact spacial and temporal reproduction)
- Then combinations of ζ_n and ω_n are obtained to represent the wave elevation

Wave energy density spectrum

- More robust way:
 - 1. Cut time signal in small pieces ('windows')
 - 2. Fourier transform each window to obtain combinations of ζ_n and ω_n
 - 3. Average the values of ζ_n over the windows (take mean square):

$$\zeta^2_{a_n}$$

- Removes sensitivity to time shift in analysis
- Reduces 'precision', improve reliability
- Gives a smooth spectrum instead of 'grass'
- Typically: measure 50 to 200 times largest expected wave period:
 - 15 to 20 minutes

Wave energy density spectrum

• Now define a spectral function *S* as:

$$S_{\zeta}(\omega_n) \cdot \Delta \omega = \sum_{\omega_n}^{\omega_n + \Delta \omega} \frac{1}{2} \zeta_{a_n}^2(\omega_n)$$

- Read as: the area under the S function for a narrow frequency band at ω is $E = \frac{1}{2}\rho g \zeta_a^2$ proportional to energy of waves at this frequency
- Now let $\Delta \omega \rightarrow 0$:

$$S_{\zeta}(\omega) \cdot d\omega = \frac{1}{2} \zeta_{a_n}^2(\omega)$$

• Variance is area under S

$$\sigma_{\zeta}^{2} = \int_{0}^{\infty} S_{\zeta}(\omega) \cdot d\omega$$

Transformation to Time Series and back

Wave energy density spectrum

• Mind the definition of *S*!

$$S_{\zeta}(\omega) \cdot d\omega = S_{\zeta}(f) \cdot df$$

• The amount of energy per frequency band is constant!!!

$$S_{\zeta}(f) = S_{\zeta}(\omega) \cdot \frac{d\omega}{df} \qquad \Rightarrow \qquad S_{\zeta}(f) = S_{\zeta}(\omega) \cdot 2\pi$$
$$\omega = 2\pi \cdot f$$

Wave energy density spectrum – wave height and period

• Spectral moments:

$$m_{n\zeta} = \int_{0}^{\infty} \omega^{n} \cdot S_{\zeta}(\omega) \cdot d\omega$$

• RMS wave elevation:

$$\sigma_{\zeta} = RMS = \sqrt{m_{0\zeta}}$$

• Significant wave amplitude:

$$\zeta_{a1/3} = 2 \cdot \sqrt{m_0 \zeta}$$

• Significant wave height:

$$H_{1/3} = 4 \cdot \sqrt{m_{0\zeta}}$$

- Mean centroid wave period: $T_1 = 2\pi \cdot \frac{m_{0\zeta}}{m_{1\zeta}}$
- Mean zero crossing period:

$$T_2 = 2\pi \cdot \sqrt{\frac{m_{0\zeta}}{m_{2\zeta}}}$$

Standard wave spectra

Storm development

TUDelft

Long term wave statistics

TUDelft

Scatter diagram

Winter Data of Areas 8, 9, 15 and 16 of the North Atlantic (Global Wave Statistics)												
						T_2 (s)						
<i>H_s</i> (m)	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	
14.5	0	0	0	0	2	30	154	362	466	370	202	
13.5	0	0	0	0	7	72 160	289	539 996	548 931	345 543	149 217	
10.5	0	0	0	1 4	41 109	363 845	1200 2485	1852 3443	$1579 \\ 2648$	843 1283	310 432	
8.5 7.5	0	0	0 0	12 41	295 818	$1996 \\ 4723$	$\begin{array}{c} 5157 \\ 10537 \end{array}$	$\begin{array}{c} 6323\\11242 \end{array}$	$4333 \\ 6755$	$\frac{1882}{2594}$	$\begin{array}{c} 572 \\ 703 \end{array}$	
6.5 5.5	0	0	1 7	138 471	2273 6187	10967 24075	20620 36940	18718 27702	9665 11969	3222 3387	767 694	
4.5	0	0	31 148	1586 5017	15757 34720 56847	47072 74007 77250	56347 64809 45013	33539 28964 13062	7804	2731 1444 381	471 202 41	
2.5 1.5 0.5	0	40 350	2699 3314	23284 8131	47839 5858	34532 1598	11554 216	2208 18	282 1	27	2	

Extrapolation to low probability of exceedance (design condition)

Sources images

[1] Source: Greenfield Geography

[2] Waves, source: Revision World

[3] Diffraction in sea waves, source: unknown

