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Introduction 
Topics of Module 1 
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• To apply linear wave theory and to derive and apply potential flow 
theory to linear waves. 

 

• To describe wave shoaling, reflection and diffraction. 

 

• To describe basic nonlinear corrections to linear wave theory. 

 

• To perform simple statistical analysis to irregular wave trains. 

 

• To apply the concept of wave energy spectra and the relation between 
the time and the frequency domains. 

 

• To describe wave climatology and wave prediction. 

Learning Objectives 
Chapter 5 
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Waves 
Introduction 

• Sea: 

• Waves driven by local wind field 

• Short crested 

• Irregular 

• Unpredictable 

 

• Swell: 

• Generated by wind (storms) far away 

• More regular (sine-like) 

• Long crested 

• Unidirectional 

• Longer waves 
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Waves 
Introduction 

• Deep water waves: short waves 

• (Almost) no influence sea floor 

 

 

 

 

• Shallow water waves: long waves 

• Large influence by sea floor 

ℎ λ > 1 2  

ℎ λ < 1 20  
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Waves 
Introduction 

• Wind waves irregular 
 

• Use superposition principle to 
decompose in regular sine waves 
 

• (compare with Fourier Transform) 
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•        wave elevation 
 

•        wave length 
 

•        wave amplitude 
 

•        wave height 
 

•        water depth 
 

•        wave period 
 

•        wave frequency 
 

•        wave number 

Regular waves 

ζ 

Definitions 
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•  Wave speed (or better: phase velocity) 
 

 
 

 
 

• Wave profile (dependent on both time and place) 
 
 
 
 

• Due to minus sign before t-term: wave travels in positive x-direction 
 

• In case plus-sign: wave travels in the other direction 

Regular waves 
Definitions 

𝑐 =
λ

𝑇
=
ω

𝑘
 

ζ 𝑥, 𝑡 = ζ𝑎cos 𝑘𝑥 − ω𝑡  

8 



Regular waves 
Potential theory 

• Assumptions: 
 

• Small wave steepness 

 

• Ignoring nonlinear terms 

 

• Linear relation between wave harmonic signals: 

• Displacements 

• Velocities 

• Accelerations 

• Surface displacement 

• (pressures, etc) 

• Wave potential 
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Regular waves 
Potential theory 

1. Assume harmonic wave elevation: 
 
 

2. Assume harmonic wave potential function: 
 
 
 

3. Use (boundary) conditions to find leading term P(z) (see book): 

• Continuity, Laplace equation 

• Sea bed boundary condition 

• Free surface dynamic boundary condition 

• Free surface kinematic boundary condition 

 

 
 

Φ𝑤 𝑥, 𝑧, 𝑡 = 𝑃 𝑧 ⋅ sin 𝑘𝑥 − ω𝑡  

ζ = ζ𝑎 ⋅ cos 𝑘𝑥 − ω𝑡  
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Regular waves 
Potential theory 

• Resulting wave potential equation: 
 
 
 
 
 
 
 

• For deep water: 
 
 
 

Φ𝑤 𝑥, 𝑧, 𝑡 = ζ𝑎
𝑔

ω
⋅
cosh𝑘 ℎ + 𝑧

cosh𝑘ℎ
⋅ sin 𝑘𝑥 − ω𝑡  

Φ𝑤 𝑥, 𝑧, 𝑡 = ζ𝑎
𝑔

ω
⋅ 𝑒𝑘𝑧 ⋅ sin 𝑘𝑥 − ω𝑡  

ℎ → ∞ 
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Regular waves 
Potential theory - FS dynamic BC 

 
 
 
 
 
• Bernoulli equation at FS: 
 
 
 
 
• 2D and small wave steepness: 

 
 

𝜕Φ𝑤
𝜕𝑡
+
1

2
𝑢2 + 𝑣2 + 𝑤2 +

𝑝0
ρ
+ 𝑔ζ = 0 

𝜕Φ𝑤
𝜕𝑡
+
𝑝0
ρ
+ 𝑔ζ = 0 

𝑎𝑡 𝑧 = ζ 

𝑎𝑡 𝑧 = 0 

Neglected/ included 
in potential 

Pressure at FS equals 
atmospheric pressure 
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Regular waves 
Potential theory – FS kinematic BC 

• Wave profile: 
 
 
 

• Small wave steepness: 
 
 
 

• Linearization (small wave steepness): 
 
 
 

Velocity of water particles at FS equals velocity of FS (no leak condition) 

ζ = ζ𝑎 ⋅ cos 𝑘𝑥 − ω𝑡  
𝜕𝑧

𝜕𝑡
=
𝜕ζ

𝜕𝑡
+
𝜕ζ

𝜕𝑥
⋅
𝜕𝑥

𝜕𝑡
 ⇒ 𝑎𝑡 𝑧 = ζ 

𝜕𝑧

𝜕𝑡
=
𝜕ζ

𝜕𝑡
 𝑎𝑡 𝑧 = ζ 

𝜕Φ𝑤
𝜕𝑧
=
𝜕ζ

𝜕𝑡
 𝑎𝑡 𝑧 = 0 
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Regular waves 
Potential theory – FS combined BC 

• Resulting kinematic FS BC: 
 

 
 
• Combining with dynamic FS BC: 

 
 
 

𝜕Φ𝑤
𝜕𝑧
=
𝜕ζ

𝜕𝑡
 𝑎𝑡 𝑧 = 0 

𝑎𝑡 𝑧 = 0 
𝜕Φ𝑤
𝜕𝑡
+ 𝑔ζ = 0 

𝜕2Φ𝑤
𝜕𝑡2
+ 𝑔
𝜕ζ

𝜕𝑡
= 0 

𝜕

𝜕𝑡
 

𝜕2Φ𝑤
𝜕𝑡2
+ 𝑔
𝜕Φ𝑤
𝜕𝑧
= 0 𝑎𝑡 𝑧 = 0 

1

𝑔
⋅
𝜕2Φ𝑤
𝜕𝑡2
+
𝜕𝑧

𝜕𝑡
= 0 𝑎𝑡 𝑧 = 0 

Combined FS BC: Cauchy-Poisson condition 
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Regular waves 
Potential theory – Dispersion relation 

• Substitution of wave potential in CP condition yields: 
 

 
 
• Deep water: 

 
 
 
 

• Shallow water: 
 
 
 

ω2 = 𝑘𝑔 ⋅ tanh𝑘ℎ 

ω2 = 𝑘𝑔 
4π2

𝑇2
=
2π𝑔

λ
 

𝑘 =
2π

λ
 

ω =
2π

𝑇
 

⇒ ⇒ λ =
𝑔

2π
𝑇2 ≈ 1.56𝑇2 

ω = 𝑘 𝑔ℎ 
𝑘 =
2π

λ
 

ω =
2π

𝑇
 

⇒ 
2π

𝑇
=
2π

λ
𝑔ℎ ⇒ λ = 𝑇 𝑔ℎ 
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Regular waves 
Potential theory – phase velocity 

• Using dispersion relation and wave celerity: 
 

 
 
• Deep water: 

 
 
 
 

• Shallow water: 
 
 
 

ω2 = 𝑘𝑔 ⋅ tanh𝑘ℎ 

𝑐 =
𝑔

𝑘
=
𝑔

ω
 

𝑐 = 𝑔ℎ 

𝑐 =
λ

𝑇
=
ω

𝑘
 ⇒ 𝑐 =

𝑔

𝑘
⋅ tanh𝑘ℎ 

𝑔ℎ critical velocity 
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Regular waves 
Potential theory – orbital velocity 

 
• Deep water: 
 
 
 

 
 
 
 

• Shallow water: 

 

𝑢 =
𝜕Φ𝑤
𝜕𝑥

 𝑤 =
𝜕Φ𝑤
𝜕𝑧

 

𝑉𝑜 = 𝑢
2 + 𝑤2 = ζ𝑎ω ⋅ 𝑒

𝑘𝑧 
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Regular waves 
Potential theory – orbital trajectories 

deep water 

shallow water 
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Regular waves 
Potential theory – wave pressure 

• Use the (linearized) Bernoulli equation 
 
 
 
 
 
 
 
 
 

• Deep water: 
 
 
 

𝜕Φ𝑤
𝜕𝑡
+
𝑝

ρ
+ 𝑔𝑧 +

1

2
𝑢2 +𝑤2 = 0 

𝑝 = −ρ𝑔𝑧 + ρ𝑔ζ𝑎 ⋅
cosh𝑘 ℎ + 𝑧

cosh𝑘ℎ
⋅ cos 𝑘𝑥 − ω𝑡  

𝑝 = −ρ𝑔𝑧 + ρ𝑔ζ𝑎 ⋅ 𝑒
𝑘𝑧 ⋅ cos 𝑘𝑥 − ω𝑡  

linearized 
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Regular waves 
Potential theory – wave energy (kinetic) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

 

𝐾 =
1

2
𝑚𝑉2 = ∫−ℎ

0
∫0
λ 1

2
ρ 𝑢2 + 𝑤2 𝑑𝑥𝑑𝑧 =. . . =

1

4
ρ𝑔ζ𝑎
2λ 

ℎ 

ζ 

𝑑𝑧 

𝑑𝑥 

𝐾 =
1

2
𝑚𝑉2 = ∫𝑣𝑜𝑙𝑢𝑚𝑒

1

2
𝑢2 + 𝑤2 𝑑𝑚 = 

= ∫−ℎ
ζ
∫0
λ 1

2
ρ 𝑢2 + 𝑤2 𝑑𝑥𝑑𝑧 = 

= ∫−ℎ
0
∫0
λ 1

2
ρ 𝑢2 +𝑤2 𝑑𝑥𝑑𝑧      

                +∫0
ζ
∫0
λ 1

2
ρ 𝑢2 +𝑤2 𝑑𝑥𝑑𝑧 =

 small 
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Regular waves 
Potential theory – wave energy (potential) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

 

ζ 

𝑑𝑥 

𝑃 = 𝑚𝑔ℎ = ∫0
λ
ρζ𝑑𝑥 ⋅ 𝑔 ⋅

1

2
ζ = 

𝑃 = 𝑚𝑔ℎ =. . . =
1

4
ρ𝑔ζ𝑎
2 ⋅ λ 

1

2
ζ 

ζ = ζ𝑎cos 𝑘𝑥 − ω𝑡  

= ∫0
λ 1

2
ρ𝑔ζ2𝑑𝑥 = 

=
1

2
ρ𝑔ζ𝑎
2∫0
λ
cos2 𝑘𝑥 − ω𝑡 𝑑𝑥 = 

=
1

2
ρ𝑔ζ𝑎
2 ⋅
1

2
λ 
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Regular waves 
Potential theory – wave energy 

• Two forms of energy: 
 

• Kinetic energy (velocity) 

 

                                                      per unit width 

 

• Potential energy (height) 

 

                                                          per unit width 

• Total energy: 

 

           per unit horizontal sea surface  

 
 
 
 
 
 
 
 
 

 

𝐾 =
1

2
𝑚𝑉2 =. . . =

1

4
ρ𝑔ζ𝑎
2 ⋅ λ 

𝑃 = 𝑚𝑔ℎ =. . . =
1

4
ρ𝑔ζ𝑎
2 ⋅ λ 

𝐸 = 𝐾 + 𝑃 =
1

2
ρ𝑔ζ𝑎
2 =
1

8
ρ𝑔𝐻2 
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Regular waves 
Potential theory – wave energy transport 

• Work = force x distance 
 
 
 

• Average work per unit time: 
 (over one period T): Power 
 

 

𝑑𝑊 = 𝑝 ⋅ 1 ⋅ 𝑑𝑧 ⋅ 𝑢 ⋅ 𝑑𝑡 = 𝑝 ⋅ 𝑢 ⋅ 𝑑𝑧 ⋅ 𝑑𝑡 

𝑃 =
1

𝑇
  𝑝

0

−ℎ

𝑡+𝑇

𝑡

⋅ 𝑢 ⋅ 𝑑𝑧 ⋅ 𝑑𝑡 

𝑃 =. . . =
1

2
ρ𝑔ζ𝑎
2 ⋅
𝑐

2
⋅ 1 +

2𝑘ℎ

sinh2𝑘ℎ
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Regular waves 
Potential theory – group velocity 

• Thus power: 
 
 
 

• Also Power = energy x velocity: 
 
 
 

• Now the group velocity becomes: 
 

 

 

 

 

𝑃 = 𝐸 ⋅ 𝑐𝑔 

𝑃 =. . . =
1

2
ρ𝑔ζ𝑎
2 ⋅
𝑐

2
⋅ 1 +

2𝑘ℎ

sinh2𝑘ℎ
 

𝐸 =
1

2
ρ𝑔ζ𝑎
2  

𝑐𝑔 =
𝑐

2
⋅ 1 +

2𝑘ℎ

sinh2𝑘ℎ
 

𝑐𝑔 =
𝑐

2
  𝑑𝑒𝑒𝑝 𝑤𝑎𝑡𝑒𝑟 𝑐𝑔 = 𝑐  𝑠ℎ𝑎𝑙𝑙𝑜𝑤𝑤𝑎𝑡𝑒𝑟 
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Regular waves 
Shoaling 

• When waves move from deep to shallow water: 
 

• Wave length decreases for fixed wave period 

• Lower celerity (wave velocity) 

 

• Energy transport needs to remain constant: 
 

• Wave height increases near shore (higher energy density) 
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Regular waves 
Shoaling 

λ = 100 
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Regular waves 
Shoaling 

[1] 
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Reflection 

Refraction Diffraction 

Standing wave: 

Regular waves 
Refraction, reflection, diffraction 
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Regular waves 
Limits to linear wave theory 

• Waves in reality not sinusoidal 

• Use non-linear wave: stokes waves for instance: 

 

 

 

 

 
 
 
 
 
 
 

• Small wave steepness: no detailed information above z=0 
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Regular waves 
Wave pressure in the splash zone 

• Linear wave theory: 

• No information above z = 0 

 

 

• Solution: 

• Wave profile stretching 
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Irregular waves 
Wave superposition 

• Basic assumption: 

• Decompose irregular waves into a 

large number of regular wave components 

• (Fourier transform) 
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Irregular waves 
Characterization of irregular sea state 

• Period: Average zero up crossing or average crest or trough period 
 

• Significant wave height Hs or H1/3 

• The average height of the one-third highest part of the observed waves 

 

• Visually estimated wave height Hv approx. corresponds with significant 
wave height 
 

• Mean wave height H or H1/1 
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Irregular waves 
Probability density distributions 

𝑃 𝐻 > 𝑎 =  𝑓
∞

𝑎

𝑥 ⋅ 𝑑𝑥 
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Irregular waves 
Wave elevation statistics 

• Standard deviation of the water level elevation signal        and significant 
wave height 
 
 
 
 
 

• Gaussian water level distribution 

 

 

• Probability of exceedance 

 

σ =
1

𝑁 − 1
 ζ𝑛
2

𝑁

𝑛=1

 

ζ 𝑡  

ζ𝑎1 3 = 2 ⋅ σ 

𝐻1 3 = 4 ⋅ σ 

𝑓 𝑥 =
1

σ 2π
⋅ 𝑒
−
𝑥

σ 2

2

 

𝑝 ζ > 𝑎 =  𝑓

∞

𝑎

𝑥 ⋅ 𝑑𝑥 =
1

σ 2π
 𝑒
−
𝑥

σ 2

2∞

𝑎

𝑑𝑥 
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Irregular waves 
Wave height statistics 

• In case: 

• Wave elevation spectrum: narrow banded 

• Gaussian distributed 

• Then: Rayleigh distributed wave height distribution 

 

 

• Probability of exceedance 

 

 

 

 

𝑓 𝑥 =
𝑥

σ2
⋅ 𝑒
−
𝑥

σ 2

2

 

𝑝 ζ > 𝑎 =  𝑓

∞

𝑎

𝑥 ⋅ 𝑑𝑥 =
1

σ2
 𝑥

∞

𝑎

⋅ 𝑒
−
𝑥

σ 2

2

𝑑𝑥 = 𝑒
−
𝑎2

2σ2 ζ𝑎1 3 = 2 ⋅ σ 

𝐻1 3 = 4 ⋅ σ 

𝑝 𝐻𝑤 > 𝐻 = 𝑒

−
1
2

𝐻
2
1
4𝐻1 3 

2

= 𝑒
−
1
2
2𝐻
𝐻1 3 

2

= 𝑒
−2
𝐻
𝐻1 3 

2
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Irregular waves 
Wave height statistics 

• Maximum wave height: choose design criterion: 

• The wave height that is exceeded once in every 1000 (storm) waves 

• It takes at least 3 hours for 1000 waves to pass by 

• By then storm should weaken 

• (chance of zero gives a design criterion of infinite wave height) 

 

𝑝 𝐻𝑤 > 𝐻𝑚𝑎𝑥 = 𝑒
−2
𝐻𝑚𝑎𝑥
𝐻1 3 

2

=
1

1000
 −2

𝐻𝑚𝑎𝑥
𝐻1 3 

2

= ln
1

1000
 ⇒ 

𝐻𝑚𝑎𝑥
𝐻1 3 
= −1 2 ⋅ ln

1

1000
 ⇒ ⇒ 𝐻𝑚𝑎𝑥 = 1.86 ⋅ 𝐻1 3  
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Irregular waves 
Wave energy density spectrum 

• Wave elevation in long-crested irregular sea: 

 

 

 

 

1. Apply Fourier transform to time trace of wave elevation 

2. Use dispersion relation: relation between k and ω 

3. Discard phase angle 

• (only statistical representation, not exact spacial and temporal 

reproduction) 

 

• Then combinations of ζn and ωn are obtained to represent the wave 
elevation 

ζ 𝑡 =  ζ𝑎𝑛

𝑁

𝑛=1

cos 𝑘𝑛𝑥 − ω𝑛𝑡 + ε𝑛  
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Irregular waves 
Wave energy density spectrum 

• More robust way: 

 
1. Cut time signal in small pieces (‘windows’) 

2. Fourier transform each window to obtain combinations of ζn and ωn 

3. Average the values of ζn over the windows (take mean square): 

 

 

• Removes sensitivity to time shift in analysis 

• Reduces ‘precision’, improve reliability 

• Gives a smooth spectrum instead of ‘grass’ 

 

• Typically: measure 50 to 200 times largest expected wave period: 

• 15 to 20 minutes 

 

 

ζ𝑎𝑛
2  
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Irregular waves 
Wave energy density spectrum 

• Now define a spectral function S as: 
 
 
 
 

• Read as: the area under the S function for a narrow frequency band at ω is 

proportional to energy of waves at this frequency 

• Now let Δω → 0: 

 

 

• Variance is area under S 

 

𝑆ζ ω𝑛 ⋅ Δω =  
1

2

ω𝑛+Δω

ω𝑛

ζ𝑎𝑛
2 ω𝑛  

𝑆ζ 𝜔 ⋅ 𝑑ω =
1

2
ζ𝑎𝑛
2 𝜔  

𝐸 =
1

2
ρ𝑔ζ𝑎
2  

σζ
2 =  𝑆ζ

∞

0

𝜔 ⋅ 𝑑ω 
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Irregular waves 
Transformation to Time Series and back 
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Irregular waves 
Wave energy density spectrum 

• Mind the definition of S! 
 
 
 
 

• The amount of energy per frequency band is constant!!! 

 

 

 

𝑆ζ ω ⋅ 𝑑ω = 𝑆ζ 𝑓 ⋅ 𝑑𝑓 

𝑆ζ 𝑓 = 𝑆ζ ω ⋅
𝑑ω

𝑑𝑓
 

ω = 2π ⋅ 𝑓 

𝑆ζ 𝑓 = 𝑆ζ ω ⋅ 2π ⇒ 
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• Mean centroid wave period: 

 

 

• Mean zero crossing period: 

Irregular waves 
Wave energy density spectrum – wave height 

and period 

• Spectral moments: 

 
 

• RMS wave elevation: 

 

 

• Significant wave amplitude: 

 

 

• Significant wave height: 

 

𝑚𝑛ζ =  ω
𝑛

∞

0

⋅ 𝑆ζ ω ⋅ 𝑑ω 

σζ = 𝑅𝑀𝑆 = 𝑚0ζ 

ζ𝑎1 3 = 2 ⋅ 𝑚0ζ 

𝐻1 3 = 4 ⋅ 𝑚0ζ 

𝑇1 = 2π ⋅
𝑚0ζ

𝑚1ζ
 

𝑇2 = 2π ⋅
𝑚0ζ

𝑚2ζ
 

42 



Irregular waves 
Standard wave spectra 

• For design purposes: 

• Describe wave frequency spectrum in one mathematical expression 

• General expression: 

 

 

 
• Common types: 

 

• Brettschneider: 

• JONSWAP: 

 

 

 

•  

 

𝑆ζ ω =
173 ⋅ 𝐻1 3 

2

𝑇1
4 ⋅ ω−5 ⋅ exp

−692

𝑇1
4 ⋅ ω

−4  

𝑆ζ ω = 𝐻1 3 
2 ⋅ 𝑓 ω, 𝑇   

𝑆ζ ω =
320 ⋅ 𝐻1 3 

2

𝑇𝑝
4 ⋅ ω−5 ⋅ exp

−1950

𝑇𝑝
4 ⋅ ω

−4 ⋅ γ𝐴 𝐴 = exp −

ω
ω𝑝
− 1

σ 2

2
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Irregular waves 
Storm development 
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Irregular waves 
Long term wave statistics 
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Irregular waves 
Scatter diagram 
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Irregular waves 
Extrapolation to low probability of exceedance 

(design condition) 
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Sources images 

[1] Source: Greenfield Geography 
[2] Waves, source: Revision World 
[3] Diffraction in sea waves, source: unknown 
 
 
 

48 


